Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387568416> ?p ?o ?g. }
- W4387568416 endingPage "8419" @default.
- W4387568416 startingPage "8419" @default.
- W4387568416 abstract "Crack propagation is a critical phenomenon in materials science and engineering, significantly impacting structural integrity, reliability, and safety across various applications. The accurate prediction of crack propagation behavior is paramount for ensuring the performance and durability of engineering components, as extensively explored in prior research. Nevertheless, there is a pressing demand for automated models capable of efficiently and precisely forecasting crack propagation. In this study, we address this need by developing a machine learning-based automated model using the powerful H2O library. This model aims to accurately predict crack propagation behavior in various materials by analyzing intricate crack patterns and delivering reliable predictions. To achieve this, we employed a comprehensive dataset derived from measured instances of crack propagation in Acrylonitrile Butadiene Styrene (ABS) specimens. Rigorous evaluation metrics, including Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and R-squared (R2) values, were applied to assess the model’s predictive accuracy. Cross-validation techniques were utilized to ensure its robustness and generalizability across diverse datasets. Our results underscore the automated model’s remarkable accuracy and reliability in predicting crack propagation. This study not only highlights the immense potential of the H2O library as a valuable tool for structural health monitoring but also advocates for the broader adoption of Automated Machine Learning (AutoML) solutions in engineering applications. In addition to presenting these findings, we define H2O as a powerful machine learning library and AutoML as Automated Machine Learning to ensure clarity and understanding for readers unfamiliar with these terms. This research not only demonstrates the significance of AutoML in future-proofing our approach to structural integrity and safety but also emphasizes the need for comprehensive reporting and understanding in scientific discourse." @default.
- W4387568416 created "2023-10-13" @default.
- W4387568416 creator A5002449661 @default.
- W4387568416 creator A5026795955 @default.
- W4387568416 creator A5056414011 @default.
- W4387568416 creator A5093049458 @default.
- W4387568416 date "2023-10-12" @default.
- W4387568416 modified "2023-10-13" @default.
- W4387568416 title "Automated Prediction of Crack Propagation Using H2O AutoML" @default.
- W4387568416 cites W2024292495 @default.
- W4387568416 cites W2102962278 @default.
- W4387568416 cites W2344785507 @default.
- W4387568416 cites W2581820084 @default.
- W4387568416 cites W2787101902 @default.
- W4387568416 cites W2945583287 @default.
- W4387568416 cites W2961085424 @default.
- W4387568416 cites W2979375213 @default.
- W4387568416 cites W3006913750 @default.
- W4387568416 cites W3016123475 @default.
- W4387568416 cites W3019290593 @default.
- W4387568416 cites W3024912007 @default.
- W4387568416 cites W3089246515 @default.
- W4387568416 cites W3090789213 @default.
- W4387568416 cites W3126008863 @default.
- W4387568416 cites W3129468683 @default.
- W4387568416 cites W3130376580 @default.
- W4387568416 cites W3165803053 @default.
- W4387568416 cites W3200630953 @default.
- W4387568416 cites W3204027633 @default.
- W4387568416 cites W3208721977 @default.
- W4387568416 cites W4210471555 @default.
- W4387568416 cites W4213308398 @default.
- W4387568416 cites W4214676493 @default.
- W4387568416 cites W4214679098 @default.
- W4387568416 cites W4220932742 @default.
- W4387568416 cites W4226373677 @default.
- W4387568416 cites W4280598592 @default.
- W4387568416 cites W4281612099 @default.
- W4387568416 cites W4282914543 @default.
- W4387568416 cites W4296709731 @default.
- W4387568416 cites W4313584881 @default.
- W4387568416 cites W4317394877 @default.
- W4387568416 doi "https://doi.org/10.3390/s23208419" @default.
- W4387568416 hasPublicationYear "2023" @default.
- W4387568416 type Work @default.
- W4387568416 citedByCount "0" @default.
- W4387568416 crossrefType "journal-article" @default.
- W4387568416 hasAuthorship W4387568416A5002449661 @default.
- W4387568416 hasAuthorship W4387568416A5026795955 @default.
- W4387568416 hasAuthorship W4387568416A5056414011 @default.
- W4387568416 hasAuthorship W4387568416A5093049458 @default.
- W4387568416 hasBestOaLocation W43875684161 @default.
- W4387568416 hasConcept C104317684 @default.
- W4387568416 hasConcept C105795698 @default.
- W4387568416 hasConcept C11413529 @default.
- W4387568416 hasConcept C119857082 @default.
- W4387568416 hasConcept C121332964 @default.
- W4387568416 hasConcept C123614077 @default.
- W4387568416 hasConcept C124101348 @default.
- W4387568416 hasConcept C127413603 @default.
- W4387568416 hasConcept C139945424 @default.
- W4387568416 hasConcept C154945302 @default.
- W4387568416 hasConcept C163258240 @default.
- W4387568416 hasConcept C185592680 @default.
- W4387568416 hasConcept C27158222 @default.
- W4387568416 hasConcept C33923547 @default.
- W4387568416 hasConcept C41008148 @default.
- W4387568416 hasConcept C43214815 @default.
- W4387568416 hasConcept C45804977 @default.
- W4387568416 hasConcept C55493867 @default.
- W4387568416 hasConcept C59085676 @default.
- W4387568416 hasConcept C62520636 @default.
- W4387568416 hasConcept C63479239 @default.
- W4387568416 hasConcept C66938386 @default.
- W4387568416 hasConceptScore W4387568416C104317684 @default.
- W4387568416 hasConceptScore W4387568416C105795698 @default.
- W4387568416 hasConceptScore W4387568416C11413529 @default.
- W4387568416 hasConceptScore W4387568416C119857082 @default.
- W4387568416 hasConceptScore W4387568416C121332964 @default.
- W4387568416 hasConceptScore W4387568416C123614077 @default.
- W4387568416 hasConceptScore W4387568416C124101348 @default.
- W4387568416 hasConceptScore W4387568416C127413603 @default.
- W4387568416 hasConceptScore W4387568416C139945424 @default.
- W4387568416 hasConceptScore W4387568416C154945302 @default.
- W4387568416 hasConceptScore W4387568416C163258240 @default.
- W4387568416 hasConceptScore W4387568416C185592680 @default.
- W4387568416 hasConceptScore W4387568416C27158222 @default.
- W4387568416 hasConceptScore W4387568416C33923547 @default.
- W4387568416 hasConceptScore W4387568416C41008148 @default.
- W4387568416 hasConceptScore W4387568416C43214815 @default.
- W4387568416 hasConceptScore W4387568416C45804977 @default.
- W4387568416 hasConceptScore W4387568416C55493867 @default.
- W4387568416 hasConceptScore W4387568416C59085676 @default.
- W4387568416 hasConceptScore W4387568416C62520636 @default.
- W4387568416 hasConceptScore W4387568416C63479239 @default.
- W4387568416 hasConceptScore W4387568416C66938386 @default.
- W4387568416 hasIssue "20" @default.
- W4387568416 hasLocation W43875684161 @default.