Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387568863> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W4387568863 endingPage "11235" @default.
- W4387568863 startingPage "11235" @default.
- W4387568863 abstract "The generation and propagation of internal waves in the ocean are a common phenomenon that plays a pivotal role in the transport of mass, momentum, and energy, as well as in global climate change. Internal waves serve as a critical component of oceanic processes, contributing to the redistribution of heat and nutrients in the ocean, which, in turn, has implications for global climate regulation. However, the automatic identification of internal waves in oceanic regions from remote sensing images has presented a significant challenge. In this research paper, we address this challenge by designing a data augmentation approach grounded in a modified deep convolutional generative adversarial network (DCGAN) to enrich MODIS remote sensing image data for the automated detection of internal waves in the ocean. Utilizing t-distributed stochastic neighbor embedding (t-SNE) technology, we demonstrate that the feature distribution of the images produced by the modified DCGAN closely resembles that of the original images. By using t-SNE dimensionality reduction technology to map high-dimensional remote sensing data into a two-dimensional space, we can better understand, visualize, and analyze the quality of data generated by the modified DCGAN. The images generated by the modified DCGAN not only expand the dataset’s size but also exhibit diverse characteristics, enhancing the model’s generalization performance. Furthermore, we have developed a deep neural network named “WaveNet,” which incorporates a channel-wise attention mechanism to effectively handle complex remote sensing images, resulting in high classification accuracy and robustness. It is important to note that this study has limitations, such as the reliance on specific remote sensing data sources and the need for further validation across various oceanic regions. These limitations are essential to consider in the broader context of oceanic research and remote sensing applications. We initially pre-train WaveNet using the EuroSAT remote sensing dataset and subsequently employ it to identify internal waves in MODIS remote sensing images. Experiments show the highest average recognition accuracy achieved is an impressive 98.625%. When compared to traditional data augmentation training sets, utilizing the training set generated by the modified DCGAN leads to a 5.437% enhancement in WaveNet’s recognition rate." @default.
- W4387568863 created "2023-10-13" @default.
- W4387568863 creator A5012342300 @default.
- W4387568863 creator A5013105826 @default.
- W4387568863 creator A5045767937 @default.
- W4387568863 creator A5050008735 @default.
- W4387568863 creator A5070626648 @default.
- W4387568863 date "2023-10-12" @default.
- W4387568863 modified "2023-10-15" @default.
- W4387568863 title "Detectionof Ocean Internal Waves Based on Modified Deep Convolutional Generative Adversarial Network and WaveNet in Moderate Resolution Imaging Spectroradiometer Images" @default.
- W4387568863 cites W1975162542 @default.
- W4387568863 cites W2057658333 @default.
- W4387568863 cites W2087009524 @default.
- W4387568863 cites W2097117768 @default.
- W4387568863 cites W2194775991 @default.
- W4387568863 cites W2229291734 @default.
- W4387568863 cites W2315849051 @default.
- W4387568863 cites W2618530766 @default.
- W4387568863 cites W2809113079 @default.
- W4387568863 cites W2909091400 @default.
- W4387568863 cites W2964024144 @default.
- W4387568863 cites W2964194231 @default.
- W4387568863 cites W2975237575 @default.
- W4387568863 cites W3014323018 @default.
- W4387568863 cites W3025926153 @default.
- W4387568863 cites W3096507310 @default.
- W4387568863 cites W3099428178 @default.
- W4387568863 cites W3212332191 @default.
- W4387568863 cites W4239510810 @default.
- W4387568863 cites W4296630039 @default.
- W4387568863 cites W4308296630 @default.
- W4387568863 cites W4309473732 @default.
- W4387568863 doi "https://doi.org/10.3390/app132011235" @default.
- W4387568863 hasPublicationYear "2023" @default.
- W4387568863 type Work @default.
- W4387568863 citedByCount "0" @default.
- W4387568863 crossrefType "journal-article" @default.
- W4387568863 hasAuthorship W4387568863A5012342300 @default.
- W4387568863 hasAuthorship W4387568863A5013105826 @default.
- W4387568863 hasAuthorship W4387568863A5045767937 @default.
- W4387568863 hasAuthorship W4387568863A5050008735 @default.
- W4387568863 hasAuthorship W4387568863A5070626648 @default.
- W4387568863 hasBestOaLocation W43875688631 @default.
- W4387568863 hasConcept C104317684 @default.
- W4387568863 hasConcept C108583219 @default.
- W4387568863 hasConcept C111368507 @default.
- W4387568863 hasConcept C127313418 @default.
- W4387568863 hasConcept C127413603 @default.
- W4387568863 hasConcept C146864707 @default.
- W4387568863 hasConcept C146978453 @default.
- W4387568863 hasConcept C153180895 @default.
- W4387568863 hasConcept C154945302 @default.
- W4387568863 hasConcept C185592680 @default.
- W4387568863 hasConcept C19269812 @default.
- W4387568863 hasConcept C2777007095 @default.
- W4387568863 hasConcept C41008148 @default.
- W4387568863 hasConcept C55493867 @default.
- W4387568863 hasConcept C62649853 @default.
- W4387568863 hasConcept C63479239 @default.
- W4387568863 hasConcept C81363708 @default.
- W4387568863 hasConceptScore W4387568863C104317684 @default.
- W4387568863 hasConceptScore W4387568863C108583219 @default.
- W4387568863 hasConceptScore W4387568863C111368507 @default.
- W4387568863 hasConceptScore W4387568863C127313418 @default.
- W4387568863 hasConceptScore W4387568863C127413603 @default.
- W4387568863 hasConceptScore W4387568863C146864707 @default.
- W4387568863 hasConceptScore W4387568863C146978453 @default.
- W4387568863 hasConceptScore W4387568863C153180895 @default.
- W4387568863 hasConceptScore W4387568863C154945302 @default.
- W4387568863 hasConceptScore W4387568863C185592680 @default.
- W4387568863 hasConceptScore W4387568863C19269812 @default.
- W4387568863 hasConceptScore W4387568863C2777007095 @default.
- W4387568863 hasConceptScore W4387568863C41008148 @default.
- W4387568863 hasConceptScore W4387568863C55493867 @default.
- W4387568863 hasConceptScore W4387568863C62649853 @default.
- W4387568863 hasConceptScore W4387568863C63479239 @default.
- W4387568863 hasConceptScore W4387568863C81363708 @default.
- W4387568863 hasIssue "20" @default.
- W4387568863 hasLocation W43875688631 @default.
- W4387568863 hasOpenAccess W4387568863 @default.
- W4387568863 hasPrimaryLocation W43875688631 @default.
- W4387568863 hasRelatedWork W1968901811 @default.
- W4387568863 hasRelatedWork W2381110733 @default.
- W4387568863 hasRelatedWork W3029198973 @default.
- W4387568863 hasRelatedWork W3133861977 @default.
- W4387568863 hasRelatedWork W3167935049 @default.
- W4387568863 hasRelatedWork W3193565141 @default.
- W4387568863 hasRelatedWork W4226493464 @default.
- W4387568863 hasRelatedWork W4293226380 @default.
- W4387568863 hasRelatedWork W4312417841 @default.
- W4387568863 hasRelatedWork W4375867731 @default.
- W4387568863 hasVolume "13" @default.
- W4387568863 isParatext "false" @default.
- W4387568863 isRetracted "false" @default.
- W4387568863 workType "article" @default.