Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387569968> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4387569968 endingPage "012003" @default.
- W4387569968 startingPage "012003" @default.
- W4387569968 abstract "Abstract Traumas like falls, sports injuries, or vehicle accidents are the main causes of Vertebral Column Fracture(VCFs) or spine fracture. The symptoms of VCF include back pain, swelling, numbness, and height decrease. VCF causes extreme pain, paralysis, difficulty in movement, etc. CT scans are inexpensive and effective in providing precise and quick VCF type detection. The determination of type VCF, however subject to inter-observer variability. To address this limitation this work introduces an automatic system for the detection of VCF type based on an ensemble of deep fine tuned models. This can assist the orthopaedicians in type identification of VCF which decreases the image interpretation time and increases the patient care time. For type identification, a total of two fine-tuned CNN architectures are used. Then, to further enhance the type identification performance, we developed an ensemble model of fine tuned VGG16 and ResNet50 deep learning models, which average the outputs of the models during final prediction. We used a dataset of 2820 CT images from eight different VCF types that were collected from Kasturba Medical college, Manipal Academy of Higher education, Manipal. The results shows that the ensemble model performs well compare to individual fine-tuned models with accuracy of 82%, precision of 0.84, recall of 0.82 and F1-score of 0.81 for VCF type identification from CT scans. This study shows that type identification of VCF in CT scans may be successfully accomplished using an ensemble deep transfer learning system with various fine tuned CNN architectures." @default.
- W4387569968 created "2023-10-13" @default.
- W4387569968 creator A5000742553 @default.
- W4387569968 creator A5022089203 @default.
- W4387569968 creator A5056139480 @default.
- W4387569968 creator A5071646904 @default.
- W4387569968 date "2023-10-01" @default.
- W4387569968 modified "2023-10-13" @default.
- W4387569968 title "Automatic type Identification of Sub - Axial Vertebral Column Fractures using Deep learning Technique" @default.
- W4387569968 cites W2592929672 @default.
- W4387569968 cites W3164454234 @default.
- W4387569968 doi "https://doi.org/10.1088/1742-6596/2571/1/012003" @default.
- W4387569968 hasPublicationYear "2023" @default.
- W4387569968 type Work @default.
- W4387569968 citedByCount "0" @default.
- W4387569968 crossrefType "journal-article" @default.
- W4387569968 hasAuthorship W4387569968A5000742553 @default.
- W4387569968 hasAuthorship W4387569968A5022089203 @default.
- W4387569968 hasAuthorship W4387569968A5056139480 @default.
- W4387569968 hasAuthorship W4387569968A5071646904 @default.
- W4387569968 hasBestOaLocation W43875699681 @default.
- W4387569968 hasConcept C108583219 @default.
- W4387569968 hasConcept C116834253 @default.
- W4387569968 hasConcept C119898033 @default.
- W4387569968 hasConcept C153180895 @default.
- W4387569968 hasConcept C154945302 @default.
- W4387569968 hasConcept C41008148 @default.
- W4387569968 hasConcept C45942800 @default.
- W4387569968 hasConcept C59822182 @default.
- W4387569968 hasConcept C86803240 @default.
- W4387569968 hasConceptScore W4387569968C108583219 @default.
- W4387569968 hasConceptScore W4387569968C116834253 @default.
- W4387569968 hasConceptScore W4387569968C119898033 @default.
- W4387569968 hasConceptScore W4387569968C153180895 @default.
- W4387569968 hasConceptScore W4387569968C154945302 @default.
- W4387569968 hasConceptScore W4387569968C41008148 @default.
- W4387569968 hasConceptScore W4387569968C45942800 @default.
- W4387569968 hasConceptScore W4387569968C59822182 @default.
- W4387569968 hasConceptScore W4387569968C86803240 @default.
- W4387569968 hasIssue "1" @default.
- W4387569968 hasLocation W43875699681 @default.
- W4387569968 hasOpenAccess W4387569968 @default.
- W4387569968 hasPrimaryLocation W43875699681 @default.
- W4387569968 hasRelatedWork W1807784185 @default.
- W4387569968 hasRelatedWork W1909207154 @default.
- W4387569968 hasRelatedWork W2794896638 @default.
- W4387569968 hasRelatedWork W3124390867 @default.
- W4387569968 hasRelatedWork W3124943098 @default.
- W4387569968 hasRelatedWork W3149839747 @default.
- W4387569968 hasRelatedWork W3162132941 @default.
- W4387569968 hasRelatedWork W3202800081 @default.
- W4387569968 hasRelatedWork W4308112567 @default.
- W4387569968 hasRelatedWork W45170056 @default.
- W4387569968 hasVolume "2571" @default.
- W4387569968 isParatext "false" @default.
- W4387569968 isRetracted "false" @default.
- W4387569968 workType "article" @default.