Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387571292> ?p ?o ?g. }
- W4387571292 endingPage "3187" @default.
- W4387571292 startingPage "3187" @default.
- W4387571292 abstract "The high prevalence of sleep apnea and the limitations of polysomnography have prompted the investigation of strategies aimed at automated diagnosis using a restricted number of physiological measures. This study aimed to demonstrate that thoracic (THO) and abdominal (ABD) movement signals are useful for accurately estimating the severity of sleep apnea, even if central respiratory events are present. Thus, we developed 2D-convolutional neural networks (CNNs) jointly using THO and ABD to automatically estimate sleep apnea severity and evaluate the central event contribution. Our proposal achieved an intraclass correlation coefficient (ICC) = 0.75 and a root mean square error (RMSE) = 10.33 events/h when estimating the apnea-hypopnea index, and ICC = 0.83 and RMSE = 0.95 events/h when estimating the central apnea index. The CNN obtained accuracies of 94.98%, 79.82%, and 81.60% for 5, 15, and 30 events/h when evaluating the complete apnea hypopnea index. The model improved when the nature of the events was central: 98.72% and 99.74% accuracy for 5 and 15 events/h. Hence, the information extracted from these signals using CNNs could be a powerful tool to diagnose sleep apnea, especially in subjects with a high density of central apnea events." @default.
- W4387571292 created "2023-10-13" @default.
- W4387571292 creator A5005396204 @default.
- W4387571292 creator A5005731174 @default.
- W4387571292 creator A5012085808 @default.
- W4387571292 creator A5028348554 @default.
- W4387571292 creator A5043513390 @default.
- W4387571292 creator A5066312205 @default.
- W4387571292 creator A5093049938 @default.
- W4387571292 date "2023-10-12" @default.
- W4387571292 modified "2023-10-13" @default.
- W4387571292 title "Prediction of the Sleep Apnea Severity Using 2D-Convolutional Neural Networks and Respiratory Effort Signals" @default.
- W4387571292 cites W1545241942 @default.
- W4387571292 cites W1639178551 @default.
- W4387571292 cites W1677182931 @default.
- W4387571292 cites W1726343988 @default.
- W4387571292 cites W1982298767 @default.
- W4387571292 cites W2002342539 @default.
- W4387571292 cites W2002548008 @default.
- W4387571292 cites W2003740803 @default.
- W4387571292 cites W2015795623 @default.
- W4387571292 cites W2020173130 @default.
- W4387571292 cites W2046033161 @default.
- W4387571292 cites W2046091579 @default.
- W4387571292 cites W2053154970 @default.
- W4387571292 cites W2055163496 @default.
- W4387571292 cites W2057023498 @default.
- W4387571292 cites W2076327188 @default.
- W4387571292 cites W2076925729 @default.
- W4387571292 cites W2077410237 @default.
- W4387571292 cites W2088245374 @default.
- W4387571292 cites W2088923975 @default.
- W4387571292 cites W2110191380 @default.
- W4387571292 cites W2110533744 @default.
- W4387571292 cites W2110905451 @default.
- W4387571292 cites W2124052130 @default.
- W4387571292 cites W2148143831 @default.
- W4387571292 cites W2483520518 @default.
- W4387571292 cites W2487770199 @default.
- W4387571292 cites W2537623047 @default.
- W4387571292 cites W2545510917 @default.
- W4387571292 cites W2560505302 @default.
- W4387571292 cites W2568222635 @default.
- W4387571292 cites W2592857683 @default.
- W4387571292 cites W2793659206 @default.
- W4387571292 cites W2805075551 @default.
- W4387571292 cites W2896719727 @default.
- W4387571292 cites W2905566041 @default.
- W4387571292 cites W2919115771 @default.
- W4387571292 cites W2983650611 @default.
- W4387571292 cites W2985634329 @default.
- W4387571292 cites W3045193143 @default.
- W4387571292 cites W3111310611 @default.
- W4387571292 cites W3113663471 @default.
- W4387571292 cites W3120723148 @default.
- W4387571292 cites W3159087937 @default.
- W4387571292 cites W3196026788 @default.
- W4387571292 cites W4214515453 @default.
- W4387571292 cites W4231438709 @default.
- W4387571292 cites W4240261103 @default.
- W4387571292 cites W4283704670 @default.
- W4387571292 cites W4294830572 @default.
- W4387571292 cites W4304481538 @default.
- W4387571292 cites W4304607872 @default.
- W4387571292 cites W4319600829 @default.
- W4387571292 cites W4386453592 @default.
- W4387571292 doi "https://doi.org/10.3390/diagnostics13203187" @default.
- W4387571292 hasPublicationYear "2023" @default.
- W4387571292 type Work @default.
- W4387571292 citedByCount "0" @default.
- W4387571292 crossrefType "journal-article" @default.
- W4387571292 hasAuthorship W4387571292A5005396204 @default.
- W4387571292 hasAuthorship W4387571292A5005731174 @default.
- W4387571292 hasAuthorship W4387571292A5012085808 @default.
- W4387571292 hasAuthorship W4387571292A5028348554 @default.
- W4387571292 hasAuthorship W4387571292A5043513390 @default.
- W4387571292 hasAuthorship W4387571292A5066312205 @default.
- W4387571292 hasAuthorship W4387571292A5093049938 @default.
- W4387571292 hasBestOaLocation W43875712921 @default.
- W4387571292 hasConcept C104709138 @default.
- W4387571292 hasConcept C105795698 @default.
- W4387571292 hasConcept C111919701 @default.
- W4387571292 hasConcept C126322002 @default.
- W4387571292 hasConcept C139945424 @default.
- W4387571292 hasConcept C154945302 @default.
- W4387571292 hasConcept C2775841894 @default.
- W4387571292 hasConcept C2776377968 @default.
- W4387571292 hasConcept C2777711342 @default.
- W4387571292 hasConcept C2777935920 @default.
- W4387571292 hasConcept C2778205975 @default.
- W4387571292 hasConcept C2780168309 @default.
- W4387571292 hasConcept C2781326671 @default.
- W4387571292 hasConcept C33923547 @default.
- W4387571292 hasConcept C41008148 @default.
- W4387571292 hasConcept C71924100 @default.
- W4387571292 hasConcept C81363708 @default.
- W4387571292 hasConcept C9893847 @default.
- W4387571292 hasConceptScore W4387571292C104709138 @default.