Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387571567> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387571567 endingPage "465" @default.
- W4387571567 startingPage "451" @default.
- W4387571567 abstract "Accurately estimating remaining useful life (RUL) is critical to reducing unplanned downtime, lowering maintenance costs, and improving safety and reliability in the field of prognostics and health management (PHM). At present, most of the data-driven RUL estimation methods are single-task learning models, i.e., the auxiliary tasks related to RUL are neglected, resulting in limited prediction accuracy. In this case, this study presents a multi-task learning (MTL) framework composed of a structure of multi-gate mixture-of-experts (MMoE) and a graph attention network (GAT) model, aiming to utilize the health state (HS) evaluation task to improve the prognostics accuracy. Specifically, GAT was employed to extract the intrinsic spatial information from the sensor network. A gating mechanism in the MMoE was utilized to adjust the parameters based on the distinctive features of different tasks. Moreover, we applied a learnable regularization term to deal with the fusion of HS loss and RUL loss. Experiments on the aircraft engine datasets reveal that the RUL prediction performances of MMoE-GAT are superior to those of available state-of-the-art (SOTA) methods." @default.
- W4387571567 created "2023-10-13" @default.
- W4387571567 creator A5040802659 @default.
- W4387571567 creator A5049453966 @default.
- W4387571567 creator A5058119137 @default.
- W4387571567 creator A5084733299 @default.
- W4387571567 creator A5087587226 @default.
- W4387571567 date "2023-10-13" @default.
- W4387571567 modified "2023-10-15" @default.
- W4387571567 title "MMoE-GAT: A Multi-Gate Mixture-of-Experts Boosted Graph Attention Network for Aircraft Engine Remaining Useful Life Prediction" @default.
- W4387571567 cites W2325344880 @default.
- W4387571567 cites W2415594836 @default.
- W4387571567 cites W2544905596 @default.
- W4387571567 cites W2809290718 @default.
- W4387571567 cites W3001566134 @default.
- W4387571567 cites W3021362913 @default.
- W4387571567 cites W3044911604 @default.
- W4387571567 cites W3083956363 @default.
- W4387571567 cites W3115104792 @default.
- W4387571567 cites W3132280229 @default.
- W4387571567 cites W4200473862 @default.
- W4387571567 cites W4210562913 @default.
- W4387571567 cites W4212940123 @default.
- W4387571567 cites W4289654476 @default.
- W4387571567 cites W4362009348 @default.
- W4387571567 cites W4377089044 @default.
- W4387571567 cites W4377246612 @default.
- W4387571567 doi "https://doi.org/10.1007/978-981-99-7240-1_36" @default.
- W4387571567 hasPublicationYear "2023" @default.
- W4387571567 type Work @default.
- W4387571567 citedByCount "0" @default.
- W4387571567 crossrefType "book-chapter" @default.
- W4387571567 hasAuthorship W4387571567A5040802659 @default.
- W4387571567 hasAuthorship W4387571567A5049453966 @default.
- W4387571567 hasAuthorship W4387571567A5058119137 @default.
- W4387571567 hasAuthorship W4387571567A5084733299 @default.
- W4387571567 hasAuthorship W4387571567A5087587226 @default.
- W4387571567 hasConcept C119857082 @default.
- W4387571567 hasConcept C121332964 @default.
- W4387571567 hasConcept C124101348 @default.
- W4387571567 hasConcept C127413603 @default.
- W4387571567 hasConcept C129364497 @default.
- W4387571567 hasConcept C132525143 @default.
- W4387571567 hasConcept C154945302 @default.
- W4387571567 hasConcept C163258240 @default.
- W4387571567 hasConcept C180591934 @default.
- W4387571567 hasConcept C200601418 @default.
- W4387571567 hasConcept C201995342 @default.
- W4387571567 hasConcept C2776135515 @default.
- W4387571567 hasConcept C2780451532 @default.
- W4387571567 hasConcept C41008148 @default.
- W4387571567 hasConcept C43214815 @default.
- W4387571567 hasConcept C62520636 @default.
- W4387571567 hasConcept C80444323 @default.
- W4387571567 hasConceptScore W4387571567C119857082 @default.
- W4387571567 hasConceptScore W4387571567C121332964 @default.
- W4387571567 hasConceptScore W4387571567C124101348 @default.
- W4387571567 hasConceptScore W4387571567C127413603 @default.
- W4387571567 hasConceptScore W4387571567C129364497 @default.
- W4387571567 hasConceptScore W4387571567C132525143 @default.
- W4387571567 hasConceptScore W4387571567C154945302 @default.
- W4387571567 hasConceptScore W4387571567C163258240 @default.
- W4387571567 hasConceptScore W4387571567C180591934 @default.
- W4387571567 hasConceptScore W4387571567C200601418 @default.
- W4387571567 hasConceptScore W4387571567C201995342 @default.
- W4387571567 hasConceptScore W4387571567C2776135515 @default.
- W4387571567 hasConceptScore W4387571567C2780451532 @default.
- W4387571567 hasConceptScore W4387571567C41008148 @default.
- W4387571567 hasConceptScore W4387571567C43214815 @default.
- W4387571567 hasConceptScore W4387571567C62520636 @default.
- W4387571567 hasConceptScore W4387571567C80444323 @default.
- W4387571567 hasLocation W43875715671 @default.
- W4387571567 hasOpenAccess W4387571567 @default.
- W4387571567 hasPrimaryLocation W43875715671 @default.
- W4387571567 hasRelatedWork W1601861909 @default.
- W4387571567 hasRelatedWork W2080951167 @default.
- W4387571567 hasRelatedWork W2143585755 @default.
- W4387571567 hasRelatedWork W2144291498 @default.
- W4387571567 hasRelatedWork W2153048446 @default.
- W4387571567 hasRelatedWork W2310476526 @default.
- W4387571567 hasRelatedWork W2383842997 @default.
- W4387571567 hasRelatedWork W2557573737 @default.
- W4387571567 hasRelatedWork W3213192587 @default.
- W4387571567 hasRelatedWork W4214827973 @default.
- W4387571567 isParatext "false" @default.
- W4387571567 isRetracted "false" @default.
- W4387571567 workType "book-chapter" @default.