Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387573267> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4387573267 endingPage "14770" @default.
- W4387573267 startingPage "14770" @default.
- W4387573267 abstract "The agricultural industry has the potential to meet the increasing food production requirements and supply nutritious and healthy food products. Since the Internet of Things (IoT) phenomenon has achieved considerable growth in recent years, IoT-based systems have been established for pest detection so as to mitigate the loss of crops and reduce serious damage by employing pesticides. In the event of pest attack, the detection of crop insects is a tedious process for farmers since a considerable proportion of crop yield is affected and the quality of pest detection is diminished. Based on morphological features, conventional insect detection is an option, although the process has a disadvantage, i.e., it necessitates highly trained taxonomists to accurately recognize the insects. In recent times, automated detection of insect categories has become a complex problem and has gained considerable interest since it is mainly carried out by agriculture specialists. Advanced technologies in deep learning (DL) and machine learning (ML) domains have effectively reached optimum performance in terms of pest detection and classification. Therefore, the current research article focuses on the design of the improved artificial-ecosystem-based optimizer with deep-learning-based insect detection and classification (IAEODL-IDC) technique in IoT-based agricultural sector. The purpose of the proposed IAEODL-IDC technique lies in the effectual identification and classification of different types of insects. In order to accomplish this objective, IoT-based sensors are used to capture the images from the agricultural environment. In addition to this, the proposed IAEODL-IDC method applies the median filtering (MF)-based noise removal process. The IAEODL-IDC technique uses the MobileNetv2 approach as well as for feature vector generation. The IAEO system is utilized for optimal hyperparameter tuning of the MobileNetv2 approach. Furthermore, the gated recurrent unit (GRU) methodology is exploited for effective recognition and classification of insects. An extensive range of simulations were conducted to exhibit the improved performance of the proposed IAEODL-IDC methodology. The simulation results validated the remarkable results of the IAEODL-IDC algorithm with recent systems." @default.
- W4387573267 created "2023-10-13" @default.
- W4387573267 creator A5036775751 @default.
- W4387573267 creator A5040648860 @default.
- W4387573267 creator A5068423119 @default.
- W4387573267 creator A5081374646 @default.
- W4387573267 date "2023-10-11" @default.
- W4387573267 modified "2023-10-13" @default.
- W4387573267 title "Improved Artificial Ecosystem Optimizer with Deep-Learning-Based Insect Detection and Classification for Agricultural Sector" @default.
- W4387573267 cites W2911969890 @default.
- W4387573267 cites W2972853121 @default.
- W4387573267 cites W3005177200 @default.
- W4387573267 cites W3010655531 @default.
- W4387573267 cites W3024764818 @default.
- W4387573267 cites W3081084433 @default.
- W4387573267 cites W3106500619 @default.
- W4387573267 cites W3128322927 @default.
- W4387573267 cites W3149839483 @default.
- W4387573267 cites W3156313549 @default.
- W4387573267 cites W3159790736 @default.
- W4387573267 cites W3190789542 @default.
- W4387573267 cites W4221083601 @default.
- W4387573267 cites W4286560850 @default.
- W4387573267 cites W4313247118 @default.
- W4387573267 cites W4313585927 @default.
- W4387573267 cites W4313646799 @default.
- W4387573267 cites W4319811889 @default.
- W4387573267 cites W4323306744 @default.
- W4387573267 cites W4327952049 @default.
- W4387573267 cites W4366593778 @default.
- W4387573267 doi "https://doi.org/10.3390/su152014770" @default.
- W4387573267 hasPublicationYear "2023" @default.
- W4387573267 type Work @default.
- W4387573267 citedByCount "0" @default.
- W4387573267 crossrefType "journal-article" @default.
- W4387573267 hasAuthorship W4387573267A5036775751 @default.
- W4387573267 hasAuthorship W4387573267A5040648860 @default.
- W4387573267 hasAuthorship W4387573267A5068423119 @default.
- W4387573267 hasAuthorship W4387573267A5081374646 @default.
- W4387573267 hasBestOaLocation W43875732671 @default.
- W4387573267 hasConcept C111919701 @default.
- W4387573267 hasConcept C116834253 @default.
- W4387573267 hasConcept C118518473 @default.
- W4387573267 hasConcept C119857082 @default.
- W4387573267 hasConcept C127413603 @default.
- W4387573267 hasConcept C154945302 @default.
- W4387573267 hasConcept C18903297 @default.
- W4387573267 hasConcept C2994141551 @default.
- W4387573267 hasConcept C41008148 @default.
- W4387573267 hasConcept C6557445 @default.
- W4387573267 hasConcept C86803240 @default.
- W4387573267 hasConcept C88463610 @default.
- W4387573267 hasConcept C98045186 @default.
- W4387573267 hasConceptScore W4387573267C111919701 @default.
- W4387573267 hasConceptScore W4387573267C116834253 @default.
- W4387573267 hasConceptScore W4387573267C118518473 @default.
- W4387573267 hasConceptScore W4387573267C119857082 @default.
- W4387573267 hasConceptScore W4387573267C127413603 @default.
- W4387573267 hasConceptScore W4387573267C154945302 @default.
- W4387573267 hasConceptScore W4387573267C18903297 @default.
- W4387573267 hasConceptScore W4387573267C2994141551 @default.
- W4387573267 hasConceptScore W4387573267C41008148 @default.
- W4387573267 hasConceptScore W4387573267C6557445 @default.
- W4387573267 hasConceptScore W4387573267C86803240 @default.
- W4387573267 hasConceptScore W4387573267C88463610 @default.
- W4387573267 hasConceptScore W4387573267C98045186 @default.
- W4387573267 hasIssue "20" @default.
- W4387573267 hasLocation W43875732671 @default.
- W4387573267 hasOpenAccess W4387573267 @default.
- W4387573267 hasPrimaryLocation W43875732671 @default.
- W4387573267 hasRelatedWork W2267286817 @default.
- W4387573267 hasRelatedWork W2327874825 @default.
- W4387573267 hasRelatedWork W2349774843 @default.
- W4387573267 hasRelatedWork W2351852648 @default.
- W4387573267 hasRelatedWork W2355956201 @default.
- W4387573267 hasRelatedWork W2386195957 @default.
- W4387573267 hasRelatedWork W2613051533 @default.
- W4387573267 hasRelatedWork W2898732673 @default.
- W4387573267 hasRelatedWork W4294170338 @default.
- W4387573267 hasRelatedWork W4309573571 @default.
- W4387573267 hasVolume "15" @default.
- W4387573267 isParatext "false" @default.
- W4387573267 isRetracted "false" @default.
- W4387573267 workType "article" @default.