Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387573719> ?p ?o ?g. }
Showing items 1 to 81 of
81
with 100 items per page.
- W4387573719 endingPage "590" @default.
- W4387573719 startingPage "582" @default.
- W4387573719 abstract "Inevitably, researchers in the field of medicine must deal with the issue of missing data. Imputation is frequently employed as a solution to this issue. Unfortunately, the perfect would overfit the experiential data distribution due to the uncertainty introduced by imputation, which would have a negative effect on the replica's generalisation presentation. It is unclear how machine learning (ML) approaches are applied in medical research despite claims that they can work around lacking data. We hope to learn if and how machine learning prediction model research discuss how they deal with missing data. Information contained in EHRs is evaluated to ensure it is accurate and comprehensive. The missing information is imputed from the recognised EHR record. The Predictive Modelling approach is used for this, and the Naive Bayesian (NB) model is then used to assess the results in terms of performance metrics related to imputation. An adaptive optimisation technique, called the Adaptive Dolphin Atom Search Optimisation (Adaptive DASO) procedure, is used to teach the NB. The created Adaptive DASO method syndicates the DASO procedure with the adaptive idea. Dolphin Echolocation (DE) and Atom Search Optimisation (ASO) come together to form DASO. This indicator of performance metrics verifies imputation's fullness." @default.
- W4387573719 created "2023-10-13" @default.
- W4387573719 creator A5001583400 @default.
- W4387573719 creator A5005937455 @default.
- W4387573719 creator A5014461385 @default.
- W4387573719 creator A5036857516 @default.
- W4387573719 creator A5058399425 @default.
- W4387573719 creator A5070538676 @default.
- W4387573719 date "2023-10-05" @default.
- W4387573719 modified "2023-10-13" @default.
- W4387573719 title "Analysis of Missing Health Care Data by Effective Adaptive DASO Based Naive Bayesian Model" @default.
- W4387573719 cites W2406868461 @default.
- W4387573719 cites W2803360343 @default.
- W4387573719 cites W3129993652 @default.
- W4387573719 cites W3144823608 @default.
- W4387573719 cites W3157210104 @default.
- W4387573719 cites W3176463264 @default.
- W4387573719 cites W3184084406 @default.
- W4387573719 cites W3191500899 @default.
- W4387573719 cites W3197791394 @default.
- W4387573719 cites W3216534531 @default.
- W4387573719 cites W3216909614 @default.
- W4387573719 cites W4200429502 @default.
- W4387573719 cites W4200568410 @default.
- W4387573719 cites W4223563429 @default.
- W4387573719 cites W4226160906 @default.
- W4387573719 cites W4229572429 @default.
- W4387573719 cites W4253678500 @default.
- W4387573719 cites W4292136591 @default.
- W4387573719 cites W4293677783 @default.
- W4387573719 cites W4313561913 @default.
- W4387573719 cites W4368405455 @default.
- W4387573719 cites W4384204492 @default.
- W4387573719 doi "https://doi.org/10.53759/7669/jmc202303049" @default.
- W4387573719 hasPublicationYear "2023" @default.
- W4387573719 type Work @default.
- W4387573719 citedByCount "0" @default.
- W4387573719 crossrefType "journal-article" @default.
- W4387573719 hasAuthorship W4387573719A5001583400 @default.
- W4387573719 hasAuthorship W4387573719A5005937455 @default.
- W4387573719 hasAuthorship W4387573719A5014461385 @default.
- W4387573719 hasAuthorship W4387573719A5036857516 @default.
- W4387573719 hasAuthorship W4387573719A5058399425 @default.
- W4387573719 hasAuthorship W4387573719A5070538676 @default.
- W4387573719 hasBestOaLocation W43875737191 @default.
- W4387573719 hasConcept C107673813 @default.
- W4387573719 hasConcept C119857082 @default.
- W4387573719 hasConcept C124101348 @default.
- W4387573719 hasConcept C154945302 @default.
- W4387573719 hasConcept C22019652 @default.
- W4387573719 hasConcept C41008148 @default.
- W4387573719 hasConcept C50644808 @default.
- W4387573719 hasConcept C58041806 @default.
- W4387573719 hasConcept C9357733 @default.
- W4387573719 hasConceptScore W4387573719C107673813 @default.
- W4387573719 hasConceptScore W4387573719C119857082 @default.
- W4387573719 hasConceptScore W4387573719C124101348 @default.
- W4387573719 hasConceptScore W4387573719C154945302 @default.
- W4387573719 hasConceptScore W4387573719C22019652 @default.
- W4387573719 hasConceptScore W4387573719C41008148 @default.
- W4387573719 hasConceptScore W4387573719C50644808 @default.
- W4387573719 hasConceptScore W4387573719C58041806 @default.
- W4387573719 hasConceptScore W4387573719C9357733 @default.
- W4387573719 hasLocation W43875737191 @default.
- W4387573719 hasOpenAccess W4387573719 @default.
- W4387573719 hasPrimaryLocation W43875737191 @default.
- W4387573719 hasRelatedWork W1574575415 @default.
- W4387573719 hasRelatedWork W2024529227 @default.
- W4387573719 hasRelatedWork W2081476516 @default.
- W4387573719 hasRelatedWork W2181530120 @default.
- W4387573719 hasRelatedWork W2581984549 @default.
- W4387573719 hasRelatedWork W3028371478 @default.
- W4387573719 hasRelatedWork W3144172081 @default.
- W4387573719 hasRelatedWork W3179858851 @default.
- W4387573719 hasRelatedWork W4211215373 @default.
- W4387573719 hasRelatedWork W3123177881 @default.
- W4387573719 isParatext "false" @default.
- W4387573719 isRetracted "false" @default.
- W4387573719 workType "article" @default.