Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387573743> ?p ?o ?g. }
- W4387573743 abstract "Abstract Propagation models are essential for the prediction of received signal strength and the planning of wireless systems in a given environment. The vector parabolic equation (VPE) method has been widely applied to the modelling of radio wave propagation in tunnels. However, carrying out simulations for large‐scale environments is still computationally expensive. A convolutional neural network (CNN)‐based propagation model, which can provide high‐fidelity received signal strength prediction based on results from low‐cost VPE simulations, is proposed. A thorough study of the generalisability, including both interpolation and extrapolation capabilities, of the proposed CNN model is conducted. It is found that the proposed model can achieve significant computational savings while maintaining acceptable accuracy, and its performance is validated in both simulations and actual tunnel cases." @default.
- W4387573743 created "2023-10-13" @default.
- W4387573743 creator A5042401810 @default.
- W4387573743 creator A5050259309 @default.
- W4387573743 creator A5082899535 @default.
- W4387573743 date "2023-10-11" @default.
- W4387573743 modified "2023-10-15" @default.
- W4387573743 title "Generalisable convolutional neural network model for radio wave propagation in tunnels" @default.
- W4387573743 cites W1507413134 @default.
- W4387573743 cites W1545916227 @default.
- W4387573743 cites W1627213273 @default.
- W4387573743 cites W2010358026 @default.
- W4387573743 cites W2016523527 @default.
- W4387573743 cites W2024676290 @default.
- W4387573743 cites W2037911773 @default.
- W4387573743 cites W2051805298 @default.
- W4387573743 cites W2096302898 @default.
- W4387573743 cites W2133141475 @default.
- W4387573743 cites W2151711937 @default.
- W4387573743 cites W2156731098 @default.
- W4387573743 cites W2158898177 @default.
- W4387573743 cites W2317508849 @default.
- W4387573743 cites W2503339013 @default.
- W4387573743 cites W2530944180 @default.
- W4387573743 cites W2568655342 @default.
- W4387573743 cites W2616222121 @default.
- W4387573743 cites W2745902057 @default.
- W4387573743 cites W2788671996 @default.
- W4387573743 cites W2794184436 @default.
- W4387573743 cites W2883495880 @default.
- W4387573743 cites W2912936737 @default.
- W4387573743 cites W2944604179 @default.
- W4387573743 cites W2982409078 @default.
- W4387573743 cites W2986489130 @default.
- W4387573743 cites W3010212176 @default.
- W4387573743 cites W3015635818 @default.
- W4387573743 cites W3186604907 @default.
- W4387573743 cites W4212889502 @default.
- W4387573743 cites W4213108265 @default.
- W4387573743 cites W4225742867 @default.
- W4387573743 cites W4379382536 @default.
- W4387573743 doi "https://doi.org/10.1049/mia2.12412" @default.
- W4387573743 hasPublicationYear "2023" @default.
- W4387573743 type Work @default.
- W4387573743 citedByCount "0" @default.
- W4387573743 crossrefType "journal-article" @default.
- W4387573743 hasAuthorship W4387573743A5042401810 @default.
- W4387573743 hasAuthorship W4387573743A5050259309 @default.
- W4387573743 hasAuthorship W4387573743A5082899535 @default.
- W4387573743 hasBestOaLocation W43875737431 @default.
- W4387573743 hasConcept C104114177 @default.
- W4387573743 hasConcept C11413529 @default.
- W4387573743 hasConcept C121332964 @default.
- W4387573743 hasConcept C127413603 @default.
- W4387573743 hasConcept C132459708 @default.
- W4387573743 hasConcept C134306372 @default.
- W4387573743 hasConcept C137800194 @default.
- W4387573743 hasConcept C154945302 @default.
- W4387573743 hasConcept C155032097 @default.
- W4387573743 hasConcept C176808163 @default.
- W4387573743 hasConcept C17744445 @default.
- W4387573743 hasConcept C199539241 @default.
- W4387573743 hasConcept C202311505 @default.
- W4387573743 hasConcept C24326235 @default.
- W4387573743 hasConcept C2776359362 @default.
- W4387573743 hasConcept C2776459999 @default.
- W4387573743 hasConcept C2778755073 @default.
- W4387573743 hasConcept C33923547 @default.
- W4387573743 hasConcept C41008148 @default.
- W4387573743 hasConcept C44154836 @default.
- W4387573743 hasConcept C50644808 @default.
- W4387573743 hasConcept C555944384 @default.
- W4387573743 hasConcept C62520636 @default.
- W4387573743 hasConcept C76155785 @default.
- W4387573743 hasConcept C76843793 @default.
- W4387573743 hasConcept C81363708 @default.
- W4387573743 hasConcept C94625758 @default.
- W4387573743 hasConceptScore W4387573743C104114177 @default.
- W4387573743 hasConceptScore W4387573743C11413529 @default.
- W4387573743 hasConceptScore W4387573743C121332964 @default.
- W4387573743 hasConceptScore W4387573743C127413603 @default.
- W4387573743 hasConceptScore W4387573743C132459708 @default.
- W4387573743 hasConceptScore W4387573743C134306372 @default.
- W4387573743 hasConceptScore W4387573743C137800194 @default.
- W4387573743 hasConceptScore W4387573743C154945302 @default.
- W4387573743 hasConceptScore W4387573743C155032097 @default.
- W4387573743 hasConceptScore W4387573743C176808163 @default.
- W4387573743 hasConceptScore W4387573743C17744445 @default.
- W4387573743 hasConceptScore W4387573743C199539241 @default.
- W4387573743 hasConceptScore W4387573743C202311505 @default.
- W4387573743 hasConceptScore W4387573743C24326235 @default.
- W4387573743 hasConceptScore W4387573743C2776359362 @default.
- W4387573743 hasConceptScore W4387573743C2776459999 @default.
- W4387573743 hasConceptScore W4387573743C2778755073 @default.
- W4387573743 hasConceptScore W4387573743C33923547 @default.
- W4387573743 hasConceptScore W4387573743C41008148 @default.
- W4387573743 hasConceptScore W4387573743C44154836 @default.
- W4387573743 hasConceptScore W4387573743C50644808 @default.
- W4387573743 hasConceptScore W4387573743C555944384 @default.
- W4387573743 hasConceptScore W4387573743C62520636 @default.