Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387576191> ?p ?o ?g. }
Showing items 1 to 73 of
73
with 100 items per page.
- W4387576191 abstract "Abstract Air temperature holds significant importance in microclimate and environmental health studies, playing a crucial role in weather regulation. There is a need to develop a reliable model capable of accurately capturing air temperature variations. In this study, we focused on the Amazon-Cerrado transitional forest, constructing a robust predictive model for hourly temperature fluctuations. This forest, situated approximately 50 km northwest of Sinop, Mato Grosso, Brazil, is a transitional area, making it important to investigate its climatic behavior and ecosystems. We estimated air temperature using machine learning techniques such as Random Forest, Gradient Boosting, Multilayer Perceptron, and Support Vector Regressor, aiming to evaluate the most effective models based on relevant metrics. Performance assessments were conducted during both dry and rainy seasons to verify their adaptability. The top-performing Random Forest model demonstrated Willmott and Spearman indexes above 0.97. The air relative humidity, solar radiation, and volumetric soil water content were identified as the most important features, evaluated with Willmott and Spearman indexes above 0.95 in a model with such dimensionality reduction. These results underscore the efficacy of machine learning techniques in accurately estimating air temperature." @default.
- W4387576191 created "2023-10-13" @default.
- W4387576191 creator A5032688706 @default.
- W4387576191 creator A5035590645 @default.
- W4387576191 creator A5046049863 @default.
- W4387576191 creator A5049538097 @default.
- W4387576191 creator A5053953467 @default.
- W4387576191 creator A5084512887 @default.
- W4387576191 creator A5093051108 @default.
- W4387576191 date "2023-10-12" @default.
- W4387576191 modified "2023-10-14" @default.
- W4387576191 title "Estimating hourly air temperature in an Amazon-Cerrado transitional forest in Brazil using machine learning regression models" @default.
- W4387576191 doi "https://doi.org/10.21203/rs.3.rs-3414339/v1" @default.
- W4387576191 hasPublicationYear "2023" @default.
- W4387576191 type Work @default.
- W4387576191 citedByCount "0" @default.
- W4387576191 crossrefType "posted-content" @default.
- W4387576191 hasAuthorship W4387576191A5032688706 @default.
- W4387576191 hasAuthorship W4387576191A5035590645 @default.
- W4387576191 hasAuthorship W4387576191A5046049863 @default.
- W4387576191 hasAuthorship W4387576191A5049538097 @default.
- W4387576191 hasAuthorship W4387576191A5053953467 @default.
- W4387576191 hasAuthorship W4387576191A5084512887 @default.
- W4387576191 hasAuthorship W4387576191A5093051108 @default.
- W4387576191 hasBestOaLocation W43875761911 @default.
- W4387576191 hasConcept C119857082 @default.
- W4387576191 hasConcept C12267149 @default.
- W4387576191 hasConcept C153294291 @default.
- W4387576191 hasConcept C158960510 @default.
- W4387576191 hasConcept C166957645 @default.
- W4387576191 hasConcept C169258074 @default.
- W4387576191 hasConcept C179717631 @default.
- W4387576191 hasConcept C18903297 @default.
- W4387576191 hasConcept C205649164 @default.
- W4387576191 hasConcept C2983363897 @default.
- W4387576191 hasConcept C32957820 @default.
- W4387576191 hasConcept C39432304 @default.
- W4387576191 hasConcept C41008148 @default.
- W4387576191 hasConcept C50644808 @default.
- W4387576191 hasConcept C535291247 @default.
- W4387576191 hasConcept C86803240 @default.
- W4387576191 hasConceptScore W4387576191C119857082 @default.
- W4387576191 hasConceptScore W4387576191C12267149 @default.
- W4387576191 hasConceptScore W4387576191C153294291 @default.
- W4387576191 hasConceptScore W4387576191C158960510 @default.
- W4387576191 hasConceptScore W4387576191C166957645 @default.
- W4387576191 hasConceptScore W4387576191C169258074 @default.
- W4387576191 hasConceptScore W4387576191C179717631 @default.
- W4387576191 hasConceptScore W4387576191C18903297 @default.
- W4387576191 hasConceptScore W4387576191C205649164 @default.
- W4387576191 hasConceptScore W4387576191C2983363897 @default.
- W4387576191 hasConceptScore W4387576191C32957820 @default.
- W4387576191 hasConceptScore W4387576191C39432304 @default.
- W4387576191 hasConceptScore W4387576191C41008148 @default.
- W4387576191 hasConceptScore W4387576191C50644808 @default.
- W4387576191 hasConceptScore W4387576191C535291247 @default.
- W4387576191 hasConceptScore W4387576191C86803240 @default.
- W4387576191 hasLocation W43875761911 @default.
- W4387576191 hasOpenAccess W4387576191 @default.
- W4387576191 hasPrimaryLocation W43875761911 @default.
- W4387576191 hasRelatedWork W2124461910 @default.
- W4387576191 hasRelatedWork W2358208156 @default.
- W4387576191 hasRelatedWork W2376097005 @default.
- W4387576191 hasRelatedWork W2383824158 @default.
- W4387576191 hasRelatedWork W2384400739 @default.
- W4387576191 hasRelatedWork W2387114639 @default.
- W4387576191 hasRelatedWork W2945538922 @default.
- W4387576191 hasRelatedWork W3147577347 @default.
- W4387576191 hasRelatedWork W3159079994 @default.
- W4387576191 hasRelatedWork W616917191 @default.
- W4387576191 isParatext "false" @default.
- W4387576191 isRetracted "false" @default.
- W4387576191 workType "article" @default.