Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387576704> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4387576704 endingPage "77" @default.
- W4387576704 startingPage "51" @default.
- W4387576704 abstract "According to National Institution for Transforming India (NITI Aayog), India's healthcare sector is taking off with an annual growth rate of around 22% since 2016. With a market close to 372 billion in 2022, the healthcare sector will be one of the largest employment sectors. While the frontline workers are promoting health infrastructure, technology is complementing their efforts. The healthcare industry is witnessing a golden period as advancements in medical imagery, data analysis, computational sciences, and robotics are streamlining complex medical procedures. Integrating technology in healthcare has not only made the entire system efficient but has also reduced dependency on physicians. Even though developed countries have world-class health infrastructure, the fact that doctors are human enough to make mistakes, cannot be ignored. Moreover, different doctors have different intelligence levels and therefore interpret medical records differently. They adopt unique approaches while treating the same disease, which might not always work. For all these challenges, artificial intelligence stands as a one-stop solution. It can learn from past results to produce an unbiased, balanced, and objective report without preconceived notions. Its capability to process large datasets and produce personalized results with high precision makes it the most optimized approach for solving these complex healthcare challenges. While healthcare infrastructure is not up to the standards everywhere, a simple yet rigorously trained artificially intelligent prediction software is efficient enough to diagnose diseases in the initial stages based on the symptoms. Today, deep learning is aiding as a tool to diagnose complex diseases such as diabetic retinopathy, with minimal medical imagery, thereby eradicating the requirements of tedious tests. Advanced image processing algorithms coupled with deep learning analysis techniques have made it possible to re-create low-resolution medical images and automate analysis to produce conclusions in real time. Neural networks are facilitating in performing detailed analysis of medical data produced through magnetic resonance imaging, cardiac tomography, electrocardiography, and other scanning technology, thus making it significantly convenient to diagnose cancer, cardiovascular diseases, retinal diseases, genetic disorders, etc.This chapter is an attempt to highlight the possible use cases of deep learning algorithms and techniques in the healthcare industry. Even though the contribution of other technologies such as the internet of things, robotics, smart medical devices, IT systems, blockchain, surgical equipment, electronic health record management systems, staffing management systems, hybrid operation theatres, kiosks, vending machines, and telehealth tools can never be neglected. Moreover, this chapter tries to focus on how deep learning algorithms are supplementing existing technologies to make them more efficient and widely used. In addition, enhancing the efficiency will not only reduce the burden on existing infrastructure but also reduce the expenditure by eliminating unnecessary biopsies. The World Health Organization's annual report of 2022 determines the devastating impact of COVID-19 worldwide due to poor infrastructure. Scientists believe that deploying digital solutions facilitated by deep learning technologies can prevent such collapses in healthcare facilities in the future." @default.
- W4387576704 created "2023-10-13" @default.
- W4387576704 creator A5017610833 @default.
- W4387576704 creator A5025309487 @default.
- W4387576704 creator A5043103337 @default.
- W4387576704 date "2023-10-10" @default.
- W4387576704 modified "2023-10-14" @default.
- W4387576704 title "Deep learning for streamlining medical image processing" @default.
- W4387576704 doi "https://doi.org/10.1049/pbhe059e_ch4" @default.
- W4387576704 hasPublicationYear "2023" @default.
- W4387576704 type Work @default.
- W4387576704 citedByCount "0" @default.
- W4387576704 crossrefType "book-chapter" @default.
- W4387576704 hasAuthorship W4387576704A5017610833 @default.
- W4387576704 hasAuthorship W4387576704A5025309487 @default.
- W4387576704 hasAuthorship W4387576704A5043103337 @default.
- W4387576704 hasConcept C108583219 @default.
- W4387576704 hasConcept C110354214 @default.
- W4387576704 hasConcept C111919701 @default.
- W4387576704 hasConcept C124101348 @default.
- W4387576704 hasConcept C127413603 @default.
- W4387576704 hasConcept C144133560 @default.
- W4387576704 hasConcept C154945302 @default.
- W4387576704 hasConcept C160735492 @default.
- W4387576704 hasConcept C162324750 @default.
- W4387576704 hasConcept C2522767166 @default.
- W4387576704 hasConcept C2989086416 @default.
- W4387576704 hasConcept C41008148 @default.
- W4387576704 hasConcept C50522688 @default.
- W4387576704 hasConcept C56739046 @default.
- W4387576704 hasConcept C75684735 @default.
- W4387576704 hasConcept C98045186 @default.
- W4387576704 hasConceptScore W4387576704C108583219 @default.
- W4387576704 hasConceptScore W4387576704C110354214 @default.
- W4387576704 hasConceptScore W4387576704C111919701 @default.
- W4387576704 hasConceptScore W4387576704C124101348 @default.
- W4387576704 hasConceptScore W4387576704C127413603 @default.
- W4387576704 hasConceptScore W4387576704C144133560 @default.
- W4387576704 hasConceptScore W4387576704C154945302 @default.
- W4387576704 hasConceptScore W4387576704C160735492 @default.
- W4387576704 hasConceptScore W4387576704C162324750 @default.
- W4387576704 hasConceptScore W4387576704C2522767166 @default.
- W4387576704 hasConceptScore W4387576704C2989086416 @default.
- W4387576704 hasConceptScore W4387576704C41008148 @default.
- W4387576704 hasConceptScore W4387576704C50522688 @default.
- W4387576704 hasConceptScore W4387576704C56739046 @default.
- W4387576704 hasConceptScore W4387576704C75684735 @default.
- W4387576704 hasConceptScore W4387576704C98045186 @default.
- W4387576704 hasLocation W43875767041 @default.
- W4387576704 hasOpenAccess W4387576704 @default.
- W4387576704 hasPrimaryLocation W43875767041 @default.
- W4387576704 hasRelatedWork W2229667228 @default.
- W4387576704 hasRelatedWork W2402418463 @default.
- W4387576704 hasRelatedWork W2403355020 @default.
- W4387576704 hasRelatedWork W3021546946 @default.
- W4387576704 hasRelatedWork W3201609874 @default.
- W4387576704 hasRelatedWork W3203418880 @default.
- W4387576704 hasRelatedWork W3215038878 @default.
- W4387576704 hasRelatedWork W4228999760 @default.
- W4387576704 hasRelatedWork W4292218619 @default.
- W4387576704 hasRelatedWork W4375840519 @default.
- W4387576704 isParatext "false" @default.
- W4387576704 isRetracted "false" @default.
- W4387576704 workType "book-chapter" @default.