Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387579655> ?p ?o ?g. }
- W4387579655 endingPage "132773" @default.
- W4387579655 startingPage "132773" @default.
- W4387579655 abstract "Biochar adsorbents synthesized from food and agricultural wastes are commonly applied to eliminate heavy metal (HM) ions from wastewater. However, biochar’s diverse characteristics and varied experimental conditions make the accurate estimation of their adsorption capacity (qe) challenging. Herein, various machine-learning (ML) and three deep learning (DL) models were built using 1,518 data points to predict the qe of HM on various biochars. The recursive feature elimination technique with 28 inputs suggested that 14 inputs were significant for model building. FT-transformer with the highest test R2 (0.98) and lowest root mean square error (RMSE) (0.296) and mean absolute error (MAE) (0.145) outperformed various ML and DL models. The SHAP feature importance analysis of the FT-transformer model predicted that the adsorption conditions (72.12%) were more important than the pyrolysis conditions (25.73%), elemental composition (1.39%), and biochar’s physical properties (0.73%). The two-feature SHAP analysis proposed the optimized process conditions including adsorbent loading of 0.25 g, initial concentration of 12 mg/L, and solution pH of 9 using phosphoric-acid pre-treated biochar synthesized from banana-peel with a higher O/C ratio. The t-SNE technique was applied to transform the 14-input matrix of the FT-Transformer into two-dimensional data. Finally, we outlined the study’s environmental implications." @default.
- W4387579655 created "2023-10-13" @default.
- W4387579655 creator A5021931822 @default.
- W4387579655 creator A5023030676 @default.
- W4387579655 creator A5026066742 @default.
- W4387579655 creator A5030054277 @default.
- W4387579655 creator A5041704144 @default.
- W4387579655 creator A5042241877 @default.
- W4387579655 creator A5046504317 @default.
- W4387579655 creator A5063098059 @default.
- W4387579655 creator A5086046034 @default.
- W4387579655 creator A5089904632 @default.
- W4387579655 date "2023-10-01" @default.
- W4387579655 modified "2023-10-14" @default.
- W4387579655 title "Transformer-based deep learning models for adsorption capacity prediction of heavy metal ions toward biochar-based adsorbents" @default.
- W4387579655 cites W2025543949 @default.
- W4387579655 cites W2295065147 @default.
- W4387579655 cites W2318880614 @default.
- W4387579655 cites W2322946682 @default.
- W4387579655 cites W2324824843 @default.
- W4387579655 cites W2515888298 @default.
- W4387579655 cites W2602485145 @default.
- W4387579655 cites W2607033330 @default.
- W4387579655 cites W2796665802 @default.
- W4387579655 cites W2810524590 @default.
- W4387579655 cites W2887689413 @default.
- W4387579655 cites W2913636935 @default.
- W4387579655 cites W2949006411 @default.
- W4387579655 cites W2994742971 @default.
- W4387579655 cites W3017005639 @default.
- W4387579655 cites W3020873385 @default.
- W4387579655 cites W3033448550 @default.
- W4387579655 cites W3043640227 @default.
- W4387579655 cites W3047855151 @default.
- W4387579655 cites W3048857572 @default.
- W4387579655 cites W3081529317 @default.
- W4387579655 cites W3091306688 @default.
- W4387579655 cites W3112121750 @default.
- W4387579655 cites W3118992756 @default.
- W4387579655 cites W3120056007 @default.
- W4387579655 cites W3125628135 @default.
- W4387579655 cites W3129176948 @default.
- W4387579655 cites W3130575690 @default.
- W4387579655 cites W3134957103 @default.
- W4387579655 cites W3138902113 @default.
- W4387579655 cites W3163830083 @default.
- W4387579655 cites W3172862316 @default.
- W4387579655 cites W3174101329 @default.
- W4387579655 cites W3185791626 @default.
- W4387579655 cites W3196495855 @default.
- W4387579655 cites W3196728776 @default.
- W4387579655 cites W3198593148 @default.
- W4387579655 cites W3213822864 @default.
- W4387579655 cites W4200622567 @default.
- W4387579655 cites W4205447219 @default.
- W4387579655 cites W4210368421 @default.
- W4387579655 cites W4220875049 @default.
- W4387579655 cites W4225370732 @default.
- W4387579655 cites W4226409175 @default.
- W4387579655 cites W4229073009 @default.
- W4387579655 cites W4281697030 @default.
- W4387579655 cites W4285008262 @default.
- W4387579655 cites W4285736115 @default.
- W4387579655 cites W4293194732 @default.
- W4387579655 cites W4296380334 @default.
- W4387579655 cites W4296397897 @default.
- W4387579655 cites W4296517588 @default.
- W4387579655 cites W4297985085 @default.
- W4387579655 cites W4306154911 @default.
- W4387579655 cites W4306182017 @default.
- W4387579655 cites W4308905182 @default.
- W4387579655 cites W4308930347 @default.
- W4387579655 cites W4309524783 @default.
- W4387579655 cites W4312018204 @default.
- W4387579655 cites W4312106820 @default.
- W4387579655 cites W4312129625 @default.
- W4387579655 cites W4313478396 @default.
- W4387579655 cites W4320035139 @default.
- W4387579655 doi "https://doi.org/10.1016/j.jhazmat.2023.132773" @default.
- W4387579655 hasPublicationYear "2023" @default.
- W4387579655 type Work @default.
- W4387579655 citedByCount "0" @default.
- W4387579655 crossrefType "journal-article" @default.
- W4387579655 hasAuthorship W4387579655A5021931822 @default.
- W4387579655 hasAuthorship W4387579655A5023030676 @default.
- W4387579655 hasAuthorship W4387579655A5026066742 @default.
- W4387579655 hasAuthorship W4387579655A5030054277 @default.
- W4387579655 hasAuthorship W4387579655A5041704144 @default.
- W4387579655 hasAuthorship W4387579655A5042241877 @default.
- W4387579655 hasAuthorship W4387579655A5046504317 @default.
- W4387579655 hasAuthorship W4387579655A5063098059 @default.
- W4387579655 hasAuthorship W4387579655A5086046034 @default.
- W4387579655 hasAuthorship W4387579655A5089904632 @default.
- W4387579655 hasConcept C105795698 @default.
- W4387579655 hasConcept C119599485 @default.
- W4387579655 hasConcept C127413603 @default.
- W4387579655 hasConcept C13965031 @default.
- W4387579655 hasConcept C139945424 @default.