Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387580934> ?p ?o ?g. }
- W4387580934 abstract "Abstract Roasted ground coffees are targets of concern regarding intentional adulteration with cheaper foreign materials because, in this form, it may be difficult to detect due to the small particle size and the dark color. Therefore, a significant interest is developing fast, sensitive, and accurate methodologies to quantify adulterants in roasted coffees. This study investigated the potential of using near-infrared spectroscopy (NIR) to quantity robusta coffee and chicory in roasted arabica coffee. The adulterated arabica coffee samples were composed of robusta coffee or chicory ranging from 2.5 to 30% in increments of 2.5%. Four regression approaches were applied: gradient boosting regression (GBR), multiple linear regression (MLR), k-nearest neighbor regression (KNNR), and partial least squares regression (PLSR). The first three regression models were performed on the features extracted from linear discriminant analysis (LDA) or principal component analysis (PCA). Additionally, two classification methods were applied (LDA and KNN). The regression models derived based on LDA-extracted features presented better performances than PCA ones. The best regression models for the quantification of robusta coffee were GBR (pRMSEP of 13.70% and R 2 of 0.839) derived based on PCA-extracted features and MLR (pRMSEP of 1.11% and R 2 of 0.998) derived based on LDA-extracted features. For the chicory quantification, the same models derived under the same settings as mentioned above also presented the best performances (GBR, pRMSEP = 9.37%, R 2 = 0.924; MLR, pRMSEP = 1.54%, R 2 = 0.997). The PLSR prediction errors for the quantification of arabica coffee and chicory were 9.90% and 8.09%, respectively. For the classification methods, the LDA model performed well compared to KNN. Generally, some models proved to be effective in quantifying robusta and chicory in roasted arabica coffee. The results of this study indicate that NIR spectroscopy could be a promising method in the coffee industry and other legal sectors for routine applications involving quality control of coffee." @default.
- W4387580934 created "2023-10-13" @default.
- W4387580934 creator A5039476684 @default.
- W4387580934 creator A5044939434 @default.
- W4387580934 creator A5050403354 @default.
- W4387580934 creator A5075375195 @default.
- W4387580934 date "2023-10-12" @default.
- W4387580934 modified "2023-10-14" @default.
- W4387580934 title "Chemometrics using near-infrared spectra for the quantification of robusta coffee and chicory added as adulterants in roasted arabica coffee" @default.
- W4387580934 cites W1444668737 @default.
- W4387580934 cites W1966649791 @default.
- W4387580934 cites W1993166110 @default.
- W4387580934 cites W2001619934 @default.
- W4387580934 cites W2012358846 @default.
- W4387580934 cites W2014732724 @default.
- W4387580934 cites W2080787854 @default.
- W4387580934 cites W2080838722 @default.
- W4387580934 cites W2085487035 @default.
- W4387580934 cites W2144792319 @default.
- W4387580934 cites W2190654388 @default.
- W4387580934 cites W2322637055 @default.
- W4387580934 cites W2522387179 @default.
- W4387580934 cites W2569890902 @default.
- W4387580934 cites W2745127447 @default.
- W4387580934 cites W2759681359 @default.
- W4387580934 cites W2769174254 @default.
- W4387580934 cites W2775362367 @default.
- W4387580934 cites W2787523897 @default.
- W4387580934 cites W2790683815 @default.
- W4387580934 cites W2808820285 @default.
- W4387580934 cites W2891665193 @default.
- W4387580934 cites W2906309407 @default.
- W4387580934 cites W2922518404 @default.
- W4387580934 cites W2931838809 @default.
- W4387580934 cites W2939085652 @default.
- W4387580934 cites W2942498334 @default.
- W4387580934 cites W3008914083 @default.
- W4387580934 cites W3026350111 @default.
- W4387580934 cites W3082609000 @default.
- W4387580934 cites W3095977265 @default.
- W4387580934 cites W3119918456 @default.
- W4387580934 cites W3139123484 @default.
- W4387580934 cites W3153565843 @default.
- W4387580934 cites W3175962988 @default.
- W4387580934 cites W4206622713 @default.
- W4387580934 cites W4224234597 @default.
- W4387580934 cites W4313559439 @default.
- W4387580934 cites W4321018203 @default.
- W4387580934 cites W4363673360 @default.
- W4387580934 doi "https://doi.org/10.1007/s11694-023-02188-w" @default.
- W4387580934 hasPublicationYear "2023" @default.
- W4387580934 type Work @default.
- W4387580934 citedByCount "0" @default.
- W4387580934 crossrefType "journal-article" @default.
- W4387580934 hasAuthorship W4387580934A5039476684 @default.
- W4387580934 hasAuthorship W4387580934A5044939434 @default.
- W4387580934 hasAuthorship W4387580934A5050403354 @default.
- W4387580934 hasAuthorship W4387580934A5075375195 @default.
- W4387580934 hasBestOaLocation W43875809341 @default.
- W4387580934 hasConcept C105795698 @default.
- W4387580934 hasConcept C144027150 @default.
- W4387580934 hasConcept C151304367 @default.
- W4387580934 hasConcept C152877465 @default.
- W4387580934 hasConcept C153180895 @default.
- W4387580934 hasConcept C154945302 @default.
- W4387580934 hasConcept C185592680 @default.
- W4387580934 hasConcept C22354355 @default.
- W4387580934 hasConcept C27438332 @default.
- W4387580934 hasConcept C2910939217 @default.
- W4387580934 hasConcept C2993298077 @default.
- W4387580934 hasConcept C31903555 @default.
- W4387580934 hasConcept C33923547 @default.
- W4387580934 hasConcept C41008148 @default.
- W4387580934 hasConcept C43617362 @default.
- W4387580934 hasConcept C48921125 @default.
- W4387580934 hasConcept C59822182 @default.
- W4387580934 hasConcept C69738355 @default.
- W4387580934 hasConcept C74887250 @default.
- W4387580934 hasConcept C86803240 @default.
- W4387580934 hasConceptScore W4387580934C105795698 @default.
- W4387580934 hasConceptScore W4387580934C144027150 @default.
- W4387580934 hasConceptScore W4387580934C151304367 @default.
- W4387580934 hasConceptScore W4387580934C152877465 @default.
- W4387580934 hasConceptScore W4387580934C153180895 @default.
- W4387580934 hasConceptScore W4387580934C154945302 @default.
- W4387580934 hasConceptScore W4387580934C185592680 @default.
- W4387580934 hasConceptScore W4387580934C22354355 @default.
- W4387580934 hasConceptScore W4387580934C27438332 @default.
- W4387580934 hasConceptScore W4387580934C2910939217 @default.
- W4387580934 hasConceptScore W4387580934C2993298077 @default.
- W4387580934 hasConceptScore W4387580934C31903555 @default.
- W4387580934 hasConceptScore W4387580934C33923547 @default.
- W4387580934 hasConceptScore W4387580934C41008148 @default.
- W4387580934 hasConceptScore W4387580934C43617362 @default.
- W4387580934 hasConceptScore W4387580934C48921125 @default.
- W4387580934 hasConceptScore W4387580934C59822182 @default.
- W4387580934 hasConceptScore W4387580934C69738355 @default.
- W4387580934 hasConceptScore W4387580934C74887250 @default.
- W4387580934 hasConceptScore W4387580934C86803240 @default.
- W4387580934 hasFunder F4320311402 @default.