Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387581418> ?p ?o ?g. }
- W4387581418 endingPage "953" @default.
- W4387581418 startingPage "953" @default.
- W4387581418 abstract "The processing of aerial images taken by drones is a challenging task due to their high resolution and the presence of small objects. The scale of the objects varies diversely depending on the position of the drone, which can result in loss of information or increased difficulty in detecting small objects. To address this issue, images are either randomly cropped or divided into small patches before training and inference. This paper proposes a defect detection framework that harnesses the advantages of slice-aided inference for small and medium-size damage on the surface of wind turbine blades. This framework enables the comparison of different slicing strategies, including a conventional patch division strategy and a more recent slice-aided hyper-inference, on several state-of-the-art deep neural network baselines for the detection of surface defects in wind turbine blade images. Our experiments provide extensive empirical results, highlighting the benefits of using the slice-aided strategy and the significant improvements made by these networks on an ultra high-resolution drone image dataset." @default.
- W4387581418 created "2023-10-13" @default.
- W4387581418 creator A5034296209 @default.
- W4387581418 creator A5050198924 @default.
- W4387581418 creator A5064381812 @default.
- W4387581418 creator A5076753547 @default.
- W4387581418 creator A5082834863 @default.
- W4387581418 date "2023-10-12" @default.
- W4387581418 modified "2023-10-14" @default.
- W4387581418 title "Slice-Aided Defect Detection in Ultra High-Resolution Wind Turbine Blade Images" @default.
- W4387581418 cites W1861492603 @default.
- W4387581418 cites W2597358295 @default.
- W4387581418 cites W2790437618 @default.
- W4387581418 cites W2885003108 @default.
- W4387581418 cites W2891859208 @default.
- W4387581418 cites W2911881708 @default.
- W4387581418 cites W2920917455 @default.
- W4387581418 cites W2926145291 @default.
- W4387581418 cites W2963351448 @default.
- W4387581418 cites W2977196073 @default.
- W4387581418 cites W2988659191 @default.
- W4387581418 cites W2997983258 @default.
- W4387581418 cites W3082559593 @default.
- W4387581418 cites W3092264835 @default.
- W4387581418 cites W3118170868 @default.
- W4387581418 cites W3118388938 @default.
- W4387581418 cites W3120985908 @default.
- W4387581418 cites W3134932951 @default.
- W4387581418 cites W3136083160 @default.
- W4387581418 cites W3188300640 @default.
- W4387581418 cites W3194872248 @default.
- W4387581418 cites W3202580978 @default.
- W4387581418 cites W4285046983 @default.
- W4387581418 cites W4291123586 @default.
- W4387581418 cites W4296252654 @default.
- W4387581418 cites W4304688912 @default.
- W4387581418 cites W4307411363 @default.
- W4387581418 cites W4312299371 @default.
- W4387581418 cites W4313175410 @default.
- W4387581418 cites W4313419376 @default.
- W4387581418 cites W4380447546 @default.
- W4387581418 doi "https://doi.org/10.3390/machines11100953" @default.
- W4387581418 hasPublicationYear "2023" @default.
- W4387581418 type Work @default.
- W4387581418 citedByCount "0" @default.
- W4387581418 crossrefType "journal-article" @default.
- W4387581418 hasAuthorship W4387581418A5034296209 @default.
- W4387581418 hasAuthorship W4387581418A5050198924 @default.
- W4387581418 hasAuthorship W4387581418A5064381812 @default.
- W4387581418 hasAuthorship W4387581418A5076753547 @default.
- W4387581418 hasAuthorship W4387581418A5082834863 @default.
- W4387581418 hasBestOaLocation W43875814181 @default.
- W4387581418 hasConcept C121684516 @default.
- W4387581418 hasConcept C127413603 @default.
- W4387581418 hasConcept C146978453 @default.
- W4387581418 hasConcept C152745839 @default.
- W4387581418 hasConcept C154945302 @default.
- W4387581418 hasConcept C172707124 @default.
- W4387581418 hasConcept C20381859 @default.
- W4387581418 hasConcept C2776190703 @default.
- W4387581418 hasConcept C2776214188 @default.
- W4387581418 hasConcept C2778449969 @default.
- W4387581418 hasConcept C31972630 @default.
- W4387581418 hasConcept C41008148 @default.
- W4387581418 hasConcept C54355233 @default.
- W4387581418 hasConcept C59519942 @default.
- W4387581418 hasConcept C86803240 @default.
- W4387581418 hasConceptScore W4387581418C121684516 @default.
- W4387581418 hasConceptScore W4387581418C127413603 @default.
- W4387581418 hasConceptScore W4387581418C146978453 @default.
- W4387581418 hasConceptScore W4387581418C152745839 @default.
- W4387581418 hasConceptScore W4387581418C154945302 @default.
- W4387581418 hasConceptScore W4387581418C172707124 @default.
- W4387581418 hasConceptScore W4387581418C20381859 @default.
- W4387581418 hasConceptScore W4387581418C2776190703 @default.
- W4387581418 hasConceptScore W4387581418C2776214188 @default.
- W4387581418 hasConceptScore W4387581418C2778449969 @default.
- W4387581418 hasConceptScore W4387581418C31972630 @default.
- W4387581418 hasConceptScore W4387581418C41008148 @default.
- W4387581418 hasConceptScore W4387581418C54355233 @default.
- W4387581418 hasConceptScore W4387581418C59519942 @default.
- W4387581418 hasConceptScore W4387581418C86803240 @default.
- W4387581418 hasIssue "10" @default.
- W4387581418 hasLocation W43875814181 @default.
- W4387581418 hasOpenAccess W4387581418 @default.
- W4387581418 hasPrimaryLocation W43875814181 @default.
- W4387581418 hasRelatedWork W2344352336 @default.
- W4387581418 hasRelatedWork W2605096541 @default.
- W4387581418 hasRelatedWork W3200286695 @default.
- W4387581418 hasRelatedWork W3206445629 @default.
- W4387581418 hasRelatedWork W4229448053 @default.
- W4387581418 hasRelatedWork W4247925126 @default.
- W4387581418 hasRelatedWork W4312858960 @default.
- W4387581418 hasRelatedWork W4327774218 @default.
- W4387581418 hasRelatedWork W4379143281 @default.
- W4387581418 hasRelatedWork W4386036939 @default.
- W4387581418 hasVolume "11" @default.
- W4387581418 isParatext "false" @default.