Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387583587> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4387583587 abstract "Machine-learning-based approaches have emerged as viable solutions for automatic detection of container-related cyber attacks. Choosing the best anomaly detection algorithms to identify such cyber attacks can be difficult in practice, and it becomes even more difficult for zero-day attacks for which no prior attack data has been labeled. In this paper, we aim to address this issue by adopting an ensemble learning strategy: a combination of different base anomaly detectors built using conventional machine learning algorithms. The learning strategy provides a highly accurate zero-day container attack detection. We first architect a testbed to facilitate data collection and storage, model training and inference. We then perform two case studies of cyber attacks. We show that, for both case studies, despite the fact that individual base detector performance varies greatly between model types and model hyperparameters, the ensemble learning can consistently produce detection results that are close to the best base anomaly detectors. Additionally, we demonstrate that the detection performance of the resulting ensemble models is on average comparable to the best-performing deep learning anomaly detection approaches, but with much higher robustness, shorter training time, and much less training data. This makes the ensemble learning approach very appealing for practical real-time cyber attack detection scenarios with limited training data." @default.
- W4387583587 created "2023-10-13" @default.
- W4387583587 creator A5000285774 @default.
- W4387583587 creator A5001430976 @default.
- W4387583587 creator A5015893204 @default.
- W4387583587 creator A5021782006 @default.
- W4387583587 creator A5022802222 @default.
- W4387583587 creator A5032118477 @default.
- W4387583587 creator A5093052700 @default.
- W4387583587 date "2023-09-12" @default.
- W4387583587 modified "2023-10-14" @default.
- W4387583587 title "A Zero-day Container Attack Detection based on Ensemble Machine Learning" @default.
- W4387583587 cites W2082938293 @default.
- W4387583587 cites W2097714558 @default.
- W4387583587 cites W2107432340 @default.
- W4387583587 cites W2127979711 @default.
- W4387583587 cites W2163030488 @default.
- W4387583587 cites W2239647876 @default.
- W4387583587 cites W2968031544 @default.
- W4387583587 cites W2969944804 @default.
- W4387583587 cites W2996042910 @default.
- W4387583587 cites W3027336681 @default.
- W4387583587 cites W3035311645 @default.
- W4387583587 cites W3092118421 @default.
- W4387583587 cites W3110723107 @default.
- W4387583587 cites W3115999986 @default.
- W4387583587 cites W3137796910 @default.
- W4387583587 cites W4200120081 @default.
- W4387583587 cites W4224933758 @default.
- W4387583587 doi "https://doi.org/10.1109/etfa54631.2023.10275683" @default.
- W4387583587 hasPublicationYear "2023" @default.
- W4387583587 type Work @default.
- W4387583587 citedByCount "0" @default.
- W4387583587 crossrefType "proceedings-article" @default.
- W4387583587 hasAuthorship W4387583587A5000285774 @default.
- W4387583587 hasAuthorship W4387583587A5001430976 @default.
- W4387583587 hasAuthorship W4387583587A5015893204 @default.
- W4387583587 hasAuthorship W4387583587A5021782006 @default.
- W4387583587 hasAuthorship W4387583587A5022802222 @default.
- W4387583587 hasAuthorship W4387583587A5032118477 @default.
- W4387583587 hasAuthorship W4387583587A5093052700 @default.
- W4387583587 hasConcept C104317684 @default.
- W4387583587 hasConcept C108583219 @default.
- W4387583587 hasConcept C119857082 @default.
- W4387583587 hasConcept C119898033 @default.
- W4387583587 hasConcept C124101348 @default.
- W4387583587 hasConcept C154945302 @default.
- W4387583587 hasConcept C185592680 @default.
- W4387583587 hasConcept C2776214188 @default.
- W4387583587 hasConcept C31258907 @default.
- W4387583587 hasConcept C31395832 @default.
- W4387583587 hasConcept C41008148 @default.
- W4387583587 hasConcept C45942800 @default.
- W4387583587 hasConcept C55493867 @default.
- W4387583587 hasConcept C63479239 @default.
- W4387583587 hasConcept C739882 @default.
- W4387583587 hasConcept C8642999 @default.
- W4387583587 hasConceptScore W4387583587C104317684 @default.
- W4387583587 hasConceptScore W4387583587C108583219 @default.
- W4387583587 hasConceptScore W4387583587C119857082 @default.
- W4387583587 hasConceptScore W4387583587C119898033 @default.
- W4387583587 hasConceptScore W4387583587C124101348 @default.
- W4387583587 hasConceptScore W4387583587C154945302 @default.
- W4387583587 hasConceptScore W4387583587C185592680 @default.
- W4387583587 hasConceptScore W4387583587C2776214188 @default.
- W4387583587 hasConceptScore W4387583587C31258907 @default.
- W4387583587 hasConceptScore W4387583587C31395832 @default.
- W4387583587 hasConceptScore W4387583587C41008148 @default.
- W4387583587 hasConceptScore W4387583587C45942800 @default.
- W4387583587 hasConceptScore W4387583587C55493867 @default.
- W4387583587 hasConceptScore W4387583587C63479239 @default.
- W4387583587 hasConceptScore W4387583587C739882 @default.
- W4387583587 hasConceptScore W4387583587C8642999 @default.
- W4387583587 hasLocation W43875835871 @default.
- W4387583587 hasOpenAccess W4387583587 @default.
- W4387583587 hasPrimaryLocation W43875835871 @default.
- W4387583587 hasRelatedWork W1514365828 @default.
- W4387583587 hasRelatedWork W1807784185 @default.
- W4387583587 hasRelatedWork W1909207154 @default.
- W4387583587 hasRelatedWork W2794896638 @default.
- W4387583587 hasRelatedWork W3101614107 @default.
- W4387583587 hasRelatedWork W3124390867 @default.
- W4387583587 hasRelatedWork W3149839747 @default.
- W4387583587 hasRelatedWork W3202800081 @default.
- W4387583587 hasRelatedWork W3204228978 @default.
- W4387583587 hasRelatedWork W45170056 @default.
- W4387583587 isParatext "false" @default.
- W4387583587 isRetracted "false" @default.
- W4387583587 workType "article" @default.