Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387584178> ?p ?o ?g. }
- W4387584178 abstract "Given the high attrition rate of de novo drug discovery and limited efficacy of single-agent therapies in cancer treatment, combination therapy prediction through in silico drug repurposing has risen as a time- and cost-effective alternative for identifying novel and potentially efficacious therapies for cancer. The purpose of this review is to provide an introduction to computational methods for cancer combination therapy prediction and to summarize recent studies that implement each of these methods. A systematic search of the PubMed database was performed, focusing on studies published within the past 10 years. Our search included reviews and articles of ongoing and retrospective studies. We prioritized articles with findings that suggest considerations for improving combination therapy prediction methods over providing a meta-analysis of all currently available cancer combination therapy prediction methods. Computational methods used for drug combination therapy prediction in cancer research include networks, regression-based machine learning, classifier machine learning models, and deep learning approaches. Each method class has its own advantages and disadvantages, so careful consideration is needed to determine the most suitable class when designing a combination therapy prediction method. Future directions to improve current combination therapy prediction technology include incorporation of disease pathobiology, drug characteristics, patient multiomics data, and drug-drug interactions to determine maximally efficacious and tolerable drug regimens for cancer. As computational methods improve in their capability to integrate patient, drug, and disease data, more comprehensive models can be developed to more accurately predict safe and efficacious combination drug therapies for cancer and other complex diseases." @default.
- W4387584178 created "2023-10-13" @default.
- W4387584178 creator A5003273101 @default.
- W4387584178 creator A5004840481 @default.
- W4387584178 creator A5068868068 @default.
- W4387584178 creator A5068947960 @default.
- W4387584178 creator A5074378938 @default.
- W4387584178 date "2023-09-01" @default.
- W4387584178 modified "2023-10-14" @default.
- W4387584178 title "Computational Advancements in Cancer Combination Therapy Prediction" @default.
- W4387584178 cites W1541232310 @default.
- W4387584178 cites W1581731557 @default.
- W4387584178 cites W1670192389 @default.
- W4387584178 cites W1696775091 @default.
- W4387584178 cites W1996313459 @default.
- W4387584178 cites W1999798000 @default.
- W4387584178 cites W2028279608 @default.
- W4387584178 cites W2042619042 @default.
- W4387584178 cites W2056782561 @default.
- W4387584178 cites W2061061337 @default.
- W4387584178 cites W2072526569 @default.
- W4387584178 cites W2103177188 @default.
- W4387584178 cites W2123060905 @default.
- W4387584178 cites W2128149816 @default.
- W4387584178 cites W2131487381 @default.
- W4387584178 cites W2138574163 @default.
- W4387584178 cites W2316329158 @default.
- W4387584178 cites W2346826281 @default.
- W4387584178 cites W2468395557 @default.
- W4387584178 cites W2475102260 @default.
- W4387584178 cites W2518086895 @default.
- W4387584178 cites W2530492154 @default.
- W4387584178 cites W2557530941 @default.
- W4387584178 cites W2604527271 @default.
- W4387584178 cites W2619747939 @default.
- W4387584178 cites W2731161895 @default.
- W4387584178 cites W2740946158 @default.
- W4387584178 cites W2766424610 @default.
- W4387584178 cites W2766761250 @default.
- W4387584178 cites W2775061087 @default.
- W4387584178 cites W2790982990 @default.
- W4387584178 cites W2794930605 @default.
- W4387584178 cites W2892308164 @default.
- W4387584178 cites W2918402786 @default.
- W4387584178 cites W2919115771 @default.
- W4387584178 cites W2922229918 @default.
- W4387584178 cites W2938206352 @default.
- W4387584178 cites W2938634307 @default.
- W4387584178 cites W2949524414 @default.
- W4387584178 cites W2980563431 @default.
- W4387584178 cites W2980848899 @default.
- W4387584178 cites W2992010506 @default.
- W4387584178 cites W2995098893 @default.
- W4387584178 cites W3000144654 @default.
- W4387584178 cites W3000469142 @default.
- W4387584178 cites W3007934576 @default.
- W4387584178 cites W3007947554 @default.
- W4387584178 cites W3009943465 @default.
- W4387584178 cites W3044334750 @default.
- W4387584178 cites W3086347240 @default.
- W4387584178 cites W3107514561 @default.
- W4387584178 cites W3133479273 @default.
- W4387584178 cites W3164680581 @default.
- W4387584178 cites W3174005399 @default.
- W4387584178 cites W3181803118 @default.
- W4387584178 cites W3188733779 @default.
- W4387584178 cites W3192627285 @default.
- W4387584178 cites W3201750263 @default.
- W4387584178 cites W3210331473 @default.
- W4387584178 cites W3216225969 @default.
- W4387584178 cites W4211238337 @default.
- W4387584178 cites W4224239606 @default.
- W4387584178 cites W4225531532 @default.
- W4387584178 cites W4226055977 @default.
- W4387584178 cites W4226111144 @default.
- W4387584178 cites W4235256446 @default.
- W4387584178 cites W4281626350 @default.
- W4387584178 cites W4292291571 @default.
- W4387584178 cites W4295413860 @default.
- W4387584178 cites W4308834893 @default.
- W4387584178 cites W4312114349 @default.
- W4387584178 cites W4317553720 @default.
- W4387584178 cites W4318261408 @default.
- W4387584178 cites W4320040097 @default.
- W4387584178 cites W4320180775 @default.
- W4387584178 cites W4362657842 @default.
- W4387584178 cites W4367601885 @default.
- W4387584178 doi "https://doi.org/10.1200/po.23.00261" @default.
- W4387584178 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/37824797" @default.
- W4387584178 hasPublicationYear "2023" @default.
- W4387584178 type Work @default.
- W4387584178 citedByCount "0" @default.
- W4387584178 crossrefType "journal-article" @default.
- W4387584178 hasAuthorship W4387584178A5003273101 @default.
- W4387584178 hasAuthorship W4387584178A5004840481 @default.
- W4387584178 hasAuthorship W4387584178A5068868068 @default.
- W4387584178 hasAuthorship W4387584178A5068947960 @default.
- W4387584178 hasAuthorship W4387584178A5074378938 @default.
- W4387584178 hasConcept C103637391 @default.
- W4387584178 hasConcept C119857082 @default.