Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387588341> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4387588341 endingPage "13" @default.
- W4387588341 startingPage "3" @default.
- W4387588341 abstract "The six-dimensional (6D) pose estimation of metal parts is a key technology for robotic grasping in intelligent manufacturing. However, current methods matching edge or geometric features suffer from unstable feature extraction results, which result in low robustness and unsatisfactory accuracy. In this paper, we propose a 6D pose estimation method based on semantic-level line matching. The proposed method uses a line detection network to replace the low-level feature extraction methods and fetch semantic-level line features. After filtered by a segmentation network, the features are utilized to generate object-level line descriptors for representing metal parts. The 2D-3D correspondences are achieved by matching descriptors in a sparse template set. Finally, 6D pose estimation of metal parts is completed by solving the PnP problem. Experimental results show that the proposed method achieves higher accuracy compared with existing methods on the Mono-6D dataset." @default.
- W4387588341 created "2023-10-13" @default.
- W4387588341 creator A5019096564 @default.
- W4387588341 creator A5022349009 @default.
- W4387588341 creator A5060175734 @default.
- W4387588341 creator A5068144453 @default.
- W4387588341 creator A5078889293 @default.
- W4387588341 date "2023-01-01" @default.
- W4387588341 modified "2023-10-14" @default.
- W4387588341 title "6D Pose Estimation Method of Metal Parts for Robotic Grasping Based on Semantic-Level Line Matching" @default.
- W4387588341 cites W1526868886 @default.
- W4387588341 cites W1901129140 @default.
- W4387588341 cites W2080342258 @default.
- W4387588341 cites W2085334966 @default.
- W4387588341 cites W2137716898 @default.
- W4387588341 cites W2160072137 @default.
- W4387588341 cites W2296615990 @default.
- W4387588341 cites W2468932261 @default.
- W4387588341 cites W2520803775 @default.
- W4387588341 cites W2914477982 @default.
- W4387588341 cites W2961662534 @default.
- W4387588341 cites W2968930673 @default.
- W4387588341 cites W2981415272 @default.
- W4387588341 cites W3104104643 @default.
- W4387588341 cites W3179246767 @default.
- W4387588341 cites W3202795503 @default.
- W4387588341 cites W4312198847 @default.
- W4387588341 doi "https://doi.org/10.1007/978-981-99-6498-7_1" @default.
- W4387588341 hasPublicationYear "2023" @default.
- W4387588341 type Work @default.
- W4387588341 citedByCount "0" @default.
- W4387588341 crossrefType "book-chapter" @default.
- W4387588341 hasAuthorship W4387588341A5019096564 @default.
- W4387588341 hasAuthorship W4387588341A5022349009 @default.
- W4387588341 hasAuthorship W4387588341A5060175734 @default.
- W4387588341 hasAuthorship W4387588341A5068144453 @default.
- W4387588341 hasAuthorship W4387588341A5078889293 @default.
- W4387588341 hasConcept C104317684 @default.
- W4387588341 hasConcept C105795698 @default.
- W4387588341 hasConcept C115961682 @default.
- W4387588341 hasConcept C153180895 @default.
- W4387588341 hasConcept C154945302 @default.
- W4387588341 hasConcept C162307627 @default.
- W4387588341 hasConcept C165064840 @default.
- W4387588341 hasConcept C185592680 @default.
- W4387588341 hasConcept C193536780 @default.
- W4387588341 hasConcept C198352243 @default.
- W4387588341 hasConcept C2524010 @default.
- W4387588341 hasConcept C2983787585 @default.
- W4387588341 hasConcept C31972630 @default.
- W4387588341 hasConcept C33923547 @default.
- W4387588341 hasConcept C36613465 @default.
- W4387588341 hasConcept C41008148 @default.
- W4387588341 hasConcept C52102323 @default.
- W4387588341 hasConcept C52622490 @default.
- W4387588341 hasConcept C55493867 @default.
- W4387588341 hasConcept C63479239 @default.
- W4387588341 hasConcept C89600930 @default.
- W4387588341 hasConcept C9417928 @default.
- W4387588341 hasConceptScore W4387588341C104317684 @default.
- W4387588341 hasConceptScore W4387588341C105795698 @default.
- W4387588341 hasConceptScore W4387588341C115961682 @default.
- W4387588341 hasConceptScore W4387588341C153180895 @default.
- W4387588341 hasConceptScore W4387588341C154945302 @default.
- W4387588341 hasConceptScore W4387588341C162307627 @default.
- W4387588341 hasConceptScore W4387588341C165064840 @default.
- W4387588341 hasConceptScore W4387588341C185592680 @default.
- W4387588341 hasConceptScore W4387588341C193536780 @default.
- W4387588341 hasConceptScore W4387588341C198352243 @default.
- W4387588341 hasConceptScore W4387588341C2524010 @default.
- W4387588341 hasConceptScore W4387588341C2983787585 @default.
- W4387588341 hasConceptScore W4387588341C31972630 @default.
- W4387588341 hasConceptScore W4387588341C33923547 @default.
- W4387588341 hasConceptScore W4387588341C36613465 @default.
- W4387588341 hasConceptScore W4387588341C41008148 @default.
- W4387588341 hasConceptScore W4387588341C52102323 @default.
- W4387588341 hasConceptScore W4387588341C52622490 @default.
- W4387588341 hasConceptScore W4387588341C55493867 @default.
- W4387588341 hasConceptScore W4387588341C63479239 @default.
- W4387588341 hasConceptScore W4387588341C89600930 @default.
- W4387588341 hasConceptScore W4387588341C9417928 @default.
- W4387588341 hasLocation W43875883411 @default.
- W4387588341 hasOpenAccess W4387588341 @default.
- W4387588341 hasPrimaryLocation W43875883411 @default.
- W4387588341 hasRelatedWork W2798721181 @default.
- W4387588341 hasRelatedWork W2951583186 @default.
- W4387588341 hasRelatedWork W3089306886 @default.
- W4387588341 hasRelatedWork W3201205132 @default.
- W4387588341 hasRelatedWork W4229059082 @default.
- W4387588341 hasRelatedWork W4253893311 @default.
- W4387588341 hasRelatedWork W4281696776 @default.
- W4387588341 hasRelatedWork W4299867837 @default.
- W4387588341 hasRelatedWork W4312694060 @default.
- W4387588341 hasRelatedWork W4318148659 @default.
- W4387588341 isParatext "false" @default.
- W4387588341 isRetracted "false" @default.
- W4387588341 workType "book-chapter" @default.