Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387590634> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4387590634 endingPage "103730" @default.
- W4387590634 startingPage "103730" @default.
- W4387590634 abstract "Uncertainty in the relevant buffer size of metro station catchment areas may drive inconsistencies in the findings on the built environment and metro ridership. Although previous studies estimate the effect of this uncertainty, the results are far from definitive. By utilizing finer-grained big data and non-parametric machine learning approaches, this study conducted a sensitivity analysis defining built environment factors within four radial buffer sizes: 300 m, 600 m, 800 m, and 1000 m on associations with metro ridership. The results suggest that: (1) different buffer sizes have little influence on the ordinary least-squares model's predictive power, but significant influence on the machine learning model; (2) the use of a 600 m buffer size around the transit station demonstrates the best model fit and variation explanation compared to others; (3) findings on the relative importance, ranks, and nonlinear associations with metro ridership can be impacted as the choice of geographic delineation of buffer sizes deviate from the true relevant geographic context of built environment variables. The results assist planners in setting a benchmark for metro catchment areas for station-area planning and demand forecasting, more importantly, the findings highlight the importance of meticulously selecting the analytical spatial unit for area-based variables, especially when utilizing non-parametric machine learning approaches in research." @default.
- W4387590634 created "2023-10-13" @default.
- W4387590634 creator A5065220600 @default.
- W4387590634 creator A5067337069 @default.
- W4387590634 creator A5068665139 @default.
- W4387590634 creator A5090194133 @default.
- W4387590634 date "2023-12-01" @default.
- W4387590634 modified "2023-10-14" @default.
- W4387590634 title "Effects of buffer size on associations between the built environment and metro ridership: A machine learning-based sensitive analysis" @default.
- W4387590634 cites W1903604466 @default.
- W4387590634 cites W1957281453 @default.
- W4387590634 cites W1977572889 @default.
- W4387590634 cites W1977796226 @default.
- W4387590634 cites W1987233492 @default.
- W4387590634 cites W1987264627 @default.
- W4387590634 cites W1996658168 @default.
- W4387590634 cites W2011572448 @default.
- W4387590634 cites W2032807833 @default.
- W4387590634 cites W2033525335 @default.
- W4387590634 cites W2044549941 @default.
- W4387590634 cites W2056944867 @default.
- W4387590634 cites W2085996514 @default.
- W4387590634 cites W2098557804 @default.
- W4387590634 cites W2102616252 @default.
- W4387590634 cites W2130268186 @default.
- W4387590634 cites W2136203868 @default.
- W4387590634 cites W2144512297 @default.
- W4387590634 cites W2173375178 @default.
- W4387590634 cites W2739931579 @default.
- W4387590634 cites W2754502454 @default.
- W4387590634 cites W2943360680 @default.
- W4387590634 cites W2946584714 @default.
- W4387590634 cites W2999339909 @default.
- W4387590634 cites W3011150349 @default.
- W4387590634 cites W3093055868 @default.
- W4387590634 cites W3164508800 @default.
- W4387590634 cites W3175724752 @default.
- W4387590634 cites W4214683150 @default.
- W4387590634 cites W4281918146 @default.
- W4387590634 cites W4283077289 @default.
- W4387590634 cites W4313435862 @default.
- W4387590634 cites W4381550774 @default.
- W4387590634 cites W4386156191 @default.
- W4387590634 doi "https://doi.org/10.1016/j.jtrangeo.2023.103730" @default.
- W4387590634 hasPublicationYear "2023" @default.
- W4387590634 type Work @default.
- W4387590634 citedByCount "0" @default.
- W4387590634 crossrefType "journal-article" @default.
- W4387590634 hasAuthorship W4387590634A5065220600 @default.
- W4387590634 hasAuthorship W4387590634A5067337069 @default.
- W4387590634 hasAuthorship W4387590634A5068665139 @default.
- W4387590634 hasAuthorship W4387590634A5090194133 @default.
- W4387590634 hasConcept C105795698 @default.
- W4387590634 hasConcept C117251300 @default.
- W4387590634 hasConcept C119857082 @default.
- W4387590634 hasConcept C166957645 @default.
- W4387590634 hasConcept C185798385 @default.
- W4387590634 hasConcept C205649164 @default.
- W4387590634 hasConcept C2779343474 @default.
- W4387590634 hasConcept C33923547 @default.
- W4387590634 hasConcept C41008148 @default.
- W4387590634 hasConcept C58640448 @default.
- W4387590634 hasConcept C99656134 @default.
- W4387590634 hasConceptScore W4387590634C105795698 @default.
- W4387590634 hasConceptScore W4387590634C117251300 @default.
- W4387590634 hasConceptScore W4387590634C119857082 @default.
- W4387590634 hasConceptScore W4387590634C166957645 @default.
- W4387590634 hasConceptScore W4387590634C185798385 @default.
- W4387590634 hasConceptScore W4387590634C205649164 @default.
- W4387590634 hasConceptScore W4387590634C2779343474 @default.
- W4387590634 hasConceptScore W4387590634C33923547 @default.
- W4387590634 hasConceptScore W4387590634C41008148 @default.
- W4387590634 hasConceptScore W4387590634C58640448 @default.
- W4387590634 hasConceptScore W4387590634C99656134 @default.
- W4387590634 hasLocation W43875906341 @default.
- W4387590634 hasOpenAccess W4387590634 @default.
- W4387590634 hasPrimaryLocation W43875906341 @default.
- W4387590634 hasRelatedWork W2028665553 @default.
- W4387590634 hasRelatedWork W2086519370 @default.
- W4387590634 hasRelatedWork W2087343574 @default.
- W4387590634 hasRelatedWork W2105860728 @default.
- W4387590634 hasRelatedWork W2130974462 @default.
- W4387590634 hasRelatedWork W2160134589 @default.
- W4387590634 hasRelatedWork W2378211422 @default.
- W4387590634 hasRelatedWork W2535915176 @default.
- W4387590634 hasRelatedWork W4321353415 @default.
- W4387590634 hasRelatedWork W972276598 @default.
- W4387590634 hasVolume "113" @default.
- W4387590634 isParatext "false" @default.
- W4387590634 isRetracted "false" @default.
- W4387590634 workType "article" @default.