Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387591062> ?p ?o ?g. }
- W4387591062 endingPage "146" @default.
- W4387591062 startingPage "135" @default.
- W4387591062 abstract "Hyperspectral remote sensing has emerged as an efficient tool to quantify the spatial and temporal variations in crop foliar nutrients, thus reducing the burden on in-situ tissue sampling and traditional chemical assays. However, the physical mechanism of hyperspectral remote sensing of foliar nutrients is under-explored, especially for those lacking absorption features. Using four-year data collected from a cranberry farm, we demonstrate the capacity of leaf and imaging spectroscopy to quantify a comprehensive set of crop foliar nutrients, including seven macronutrients (N, P, K, Mg, Ca, S, Na) and five micronutrients (Fe, Mn, B, Cu, Zn). Specifically, we: 1) compared the performance of four data-driven approaches to estimate foliar nutrients at both leaf and canopy scales, including partial least square regression (PLSR), support vector regression (SVR), Gaussian process regression (GPR) and random forest regression (RFR); and 2) explored the physical basis of hyperspectral remote sensing of foliar nutrients. Our results showed that: 1) at leaf scales linear approaches PLSR and SVR performed best for nine nutrients (P, Mg, Ca, S, Na, Fe, B, Cu and Zn), whereas nonlinear approaches GPR and RFR performed best only for three nutrients (N, K and Mn); 2) at canopy scales no data-driven approach significantly outperformed others; 3) the best modelling accuracy varied with foliar nutrients (leaf scales: R2 from 0.30 to 0.93 and RRMSE from 9 to 51%; canopy scales: R2 from 0.15 to 0.81 and RRMSE from 7 to 37%). The physical basis of hyperspectral remote sensing of foliar nutrients was mainly attributed to their strong correlations with leaf compounds that have apparent absorption features. More specifically, at leaf scales the correlation between foliar nutrients and LMA (leaf mass per area) was leveraged by models to predict foliar nutrients from leaf spectra; at canopy scales the correlation of foliar nutrients with leaf chlorophyll and canopy LAI (Leaf area index) was leveraged by models to predict foliar nutrients from canopy spectra. This study revealed the importance of trait correlations in predicting foliar nutrients, and improved our understanding of the physical mechanisms in hyperspectral remotes sensing of foliar nutrients." @default.
- W4387591062 created "2023-10-13" @default.
- W4387591062 creator A5043982259 @default.
- W4387591062 creator A5084085980 @default.
- W4387591062 creator A5086546907 @default.
- W4387591062 creator A5093054332 @default.
- W4387591062 date "2023-11-01" @default.
- W4387591062 modified "2023-10-14" @default.
- W4387591062 title "Multi-year hyperspectral remote sensing of a comprehensive set of crop foliar nutrients in cranberries" @default.
- W4387591062 cites W1494056186 @default.
- W4387591062 cites W1576601709 @default.
- W4387591062 cites W1966579847 @default.
- W4387591062 cites W1968187190 @default.
- W4387591062 cites W1975329034 @default.
- W4387591062 cites W1978617972 @default.
- W4387591062 cites W1987556970 @default.
- W4387591062 cites W2004598447 @default.
- W4387591062 cites W2014669071 @default.
- W4387591062 cites W2039768055 @default.
- W4387591062 cites W2041550093 @default.
- W4387591062 cites W2046404820 @default.
- W4387591062 cites W2077439648 @default.
- W4387591062 cites W2099704405 @default.
- W4387591062 cites W2105122814 @default.
- W4387591062 cites W2118295263 @default.
- W4387591062 cites W2123386011 @default.
- W4387591062 cites W2127049470 @default.
- W4387591062 cites W2141974358 @default.
- W4387591062 cites W2151144950 @default.
- W4387591062 cites W2163410149 @default.
- W4387591062 cites W2165698076 @default.
- W4387591062 cites W2166307050 @default.
- W4387591062 cites W2181982239 @default.
- W4387591062 cites W2261059368 @default.
- W4387591062 cites W2266690409 @default.
- W4387591062 cites W2313541398 @default.
- W4387591062 cites W2527752000 @default.
- W4387591062 cites W2545169021 @default.
- W4387591062 cites W2549423164 @default.
- W4387591062 cites W2591119867 @default.
- W4387591062 cites W2611517298 @default.
- W4387591062 cites W2613366256 @default.
- W4387591062 cites W2791891890 @default.
- W4387591062 cites W2902505403 @default.
- W4387591062 cites W2913040965 @default.
- W4387591062 cites W2915540904 @default.
- W4387591062 cites W2953803544 @default.
- W4387591062 cites W3007857479 @default.
- W4387591062 cites W3010955769 @default.
- W4387591062 cites W3032271083 @default.
- W4387591062 cites W3073865269 @default.
- W4387591062 cites W3094633680 @default.
- W4387591062 cites W3121828030 @default.
- W4387591062 cites W3124990706 @default.
- W4387591062 cites W3130951558 @default.
- W4387591062 cites W3163781612 @default.
- W4387591062 cites W3178400248 @default.
- W4387591062 cites W3205772352 @default.
- W4387591062 cites W3214598550 @default.
- W4387591062 cites W3216831469 @default.
- W4387591062 cites W4226250354 @default.
- W4387591062 cites W4226322408 @default.
- W4387591062 cites W4229052994 @default.
- W4387591062 cites W4281611837 @default.
- W4387591062 cites W4291915081 @default.
- W4387591062 cites W4292394619 @default.
- W4387591062 cites W4296848700 @default.
- W4387591062 cites W633320881 @default.
- W4387591062 doi "https://doi.org/10.1016/j.isprsjprs.2023.10.003" @default.
- W4387591062 hasPublicationYear "2023" @default.
- W4387591062 type Work @default.
- W4387591062 citedByCount "0" @default.
- W4387591062 crossrefType "journal-article" @default.
- W4387591062 hasAuthorship W4387591062A5043982259 @default.
- W4387591062 hasAuthorship W4387591062A5084085980 @default.
- W4387591062 hasAuthorship W4387591062A5086546907 @default.
- W4387591062 hasAuthorship W4387591062A5093054332 @default.
- W4387591062 hasConcept C101000010 @default.
- W4387591062 hasConcept C105795698 @default.
- W4387591062 hasConcept C137580998 @default.
- W4387591062 hasConcept C142796444 @default.
- W4387591062 hasConcept C14522933 @default.
- W4387591062 hasConcept C159078339 @default.
- W4387591062 hasConcept C159390177 @default.
- W4387591062 hasConcept C159750122 @default.
- W4387591062 hasConcept C178790620 @default.
- W4387591062 hasConcept C185592680 @default.
- W4387591062 hasConcept C18903297 @default.
- W4387591062 hasConcept C205649164 @default.
- W4387591062 hasConcept C22354355 @default.
- W4387591062 hasConcept C33923547 @default.
- W4387591062 hasConcept C39432304 @default.
- W4387591062 hasConcept C48921125 @default.
- W4387591062 hasConcept C59822182 @default.
- W4387591062 hasConcept C62649853 @default.
- W4387591062 hasConcept C6557445 @default.
- W4387591062 hasConcept C81692654 @default.
- W4387591062 hasConcept C86803240 @default.