Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387601776> ?p ?o ?g. }
- W4387601776 endingPage "18" @default.
- W4387601776 startingPage "1" @default.
- W4387601776 abstract "ABSTRACTAxions are an increasingly popular topic in theoretical physics, and are sparking a global experimental effort. In the following I review the motivations for the existence of axions, the theories underlying them, and the methods to search for them. The target audience is an interested amateur, physics undergraduate, or scientist in another field, and so I use no complicated mathematics or advanced theoretical topics, and instead use lots of analogies.KEYWORDS: Axionsdark matterhaloscopesuperradianceaxion electrodynamicsstrong cp problem AcknowledgmentsI am supported by an Ernest Rutherford Fellowship from the Science and Technologies Facilities Council (ST/T004037/1).Disclosure statementNo potential conflict of interest was reported by the author(s).Nomenclature/ notationThe gradient operator in three dimensions is ∇, and in this context × is the vector cross product. The speed of light is c, Planck's constant is h. Particle masses are quoted in units of electronvolts, eV, where 1 eV=1.78×10−36 kg, and an atom of hydrogen is approximately 109 eV. Particle physicists often used units where ℏ=c=1, and while I have tried my best to restore these factors, as well as those of ϵ0 and μ0, I cannot guarantee I caught every one.Notes1 For further reading on GR I recommend the introductory book by Schutz [Citation70] for practical purposes, while the ‘first track’ in Misner, Thorne, and Wheeler [Citation71] contains lots of thought experiments and intuition. For those keen to do research, I enjoy Carroll [Citation72].2 We focused on evidence for DM from the CMB because it is impossible to explain the CMB any other way. Modifying gravity doesn't work without also introducing new dark degrees of freedom, i.e. without introducing DM.3 The constant of proportionality can be estimated by dimensional analysis. An EDM has units charge times distance. The charge we have to play with is the quark charge, e/3, and the distance is the size of the neutron, 10−15 m. So we estimate the constant as the product of these numbers, about 3×10−14e m. The value of the neutron EDM computed using quantum field theory [Citation73] is d=5×10−14θe m: very close to our naive estimate.4 The name ‘axion’ is due to Frank Wilczek. It was Weinberg and Wilczek who, independently later in 1977 (published in 1978) [Citation74,Citation75] first realised that Peccei and Quinn's theory predicted the existence of a particle, and computed its mass. Wilczek coined the phrase ‘axion’ after the American detergent. The ‘axi’ comes from the left/right-handed necessity of the interaction between axions and quarks, which physicists call ‘axial’, while the ‘on’ just sounds like a particle name (think ‘boson’, ‘neutron’ etc.). The axion ‘cleans up the mess’ of the strong-CP problem. Weinberg's name for the particle was the ‘Higglet’, since it is a bit like a Higgs boson, only lighter.5 The actual computation requires a graduate course in quantum field theory. You can find it in these references [Citation76,Citation77].6 You can read about Kaluza–Klein theory on Wikipedia.7 In the weakly coupled limit. In the strong coupling limit, degrees of freedom on the strings reorganise themselves into an ‘emergent’ 11th dimension or even a 12th ‘half’ dimension in so-called M-theory and F-theory.8 For a Contemporary Physics article on related and parallel topic, the use of atom interferometers to search for ultralight scalar dark matter, see Ref. [Citation78].9 In a remarkable coincidence, some of the first searches for another dark matter candidate, the supersymmetric weakly interacting massive particle (WIMP), were also carried out in this year [Citation79]. The theory of WIMP DM production, like that of axions, was also developed in 1983 [Citation80,Citation81], after major theoretical breakthroughs in 1981 [Citation82]. The futures of these two models, WIMPs and axions, were very different though, with WIMPs very much in the ascendancy throughout the 1990s and early 2000s. This was due, in part, to technology: WIMP DM direct searches developed sensitivity rapidly, and indirect searches piggybacked off the Higgs search at Cern. Axion searches were much more limited by technology, and ideas, until the 2010s and later. Now, the fortunes of axions and WIMPs have largely reversed.10 There are some subtleties if the axion clumps into ‘miniclusters’, but this is not expected to be relevant at the mass scale probed by ADMX, see Refs. [Citation83–87]Additional informationNotes on contributorsDavid J. E. MarshDavid J. E. Marsh obtained his DPhil from the University of Oxford, and has since held posts at Perimeter Institute, King's College London, and University of Goettingen. He is currently an Ernest Rutherford Fellow and Lecturer in Theoretical Particle Physics and Cosmology at King's College London, Strand, London, WC2R 2LS." @default.
- W4387601776 created "2023-10-14" @default.
- W4387601776 creator A5067398124 @default.
- W4387601776 date "2023-10-13" @default.
- W4387601776 modified "2023-10-14" @default.
- W4387601776 title "Axions for amateurs" @default.
- W4387601776 cites W1568794387 @default.
- W4387601776 cites W1612996888 @default.
- W4387601776 cites W1879058903 @default.
- W4387601776 cites W1888268727 @default.
- W4387601776 cites W1926075317 @default.
- W4387601776 cites W1964047433 @default.
- W4387601776 cites W1970189512 @default.
- W4387601776 cites W1973565526 @default.
- W4387601776 cites W1982379873 @default.
- W4387601776 cites W1997474154 @default.
- W4387601776 cites W2000000424 @default.
- W4387601776 cites W2000037069 @default.
- W4387601776 cites W2007232419 @default.
- W4387601776 cites W2007746935 @default.
- W4387601776 cites W2016654236 @default.
- W4387601776 cites W2022463172 @default.
- W4387601776 cites W2037540720 @default.
- W4387601776 cites W2045884684 @default.
- W4387601776 cites W2052621256 @default.
- W4387601776 cites W2058808507 @default.
- W4387601776 cites W2060363242 @default.
- W4387601776 cites W2061044423 @default.
- W4387601776 cites W2064241934 @default.
- W4387601776 cites W2066194056 @default.
- W4387601776 cites W2072856491 @default.
- W4387601776 cites W2078141585 @default.
- W4387601776 cites W2094689072 @default.
- W4387601776 cites W2112384351 @default.
- W4387601776 cites W2137478082 @default.
- W4387601776 cites W2143270134 @default.
- W4387601776 cites W2163349752 @default.
- W4387601776 cites W2166283712 @default.
- W4387601776 cites W2340069741 @default.
- W4387601776 cites W2527143382 @default.
- W4387601776 cites W2550098228 @default.
- W4387601776 cites W2567426820 @default.
- W4387601776 cites W2901474811 @default.
- W4387601776 cites W2941508303 @default.
- W4387601776 cites W2963002078 @default.
- W4387601776 cites W3002346124 @default.
- W4387601776 cites W3034335506 @default.
- W4387601776 cites W3037524103 @default.
- W4387601776 cites W3037896898 @default.
- W4387601776 cites W3099162885 @default.
- W4387601776 cites W3104247110 @default.
- W4387601776 cites W3104298081 @default.
- W4387601776 cites W3104918858 @default.
- W4387601776 cites W3107066083 @default.
- W4387601776 cites W3107879346 @default.
- W4387601776 cites W3122660750 @default.
- W4387601776 cites W3122803301 @default.
- W4387601776 cites W3125978220 @default.
- W4387601776 cites W3126146816 @default.
- W4387601776 cites W3187047450 @default.
- W4387601776 cites W3196911966 @default.
- W4387601776 cites W3215683986 @default.
- W4387601776 cites W4213166322 @default.
- W4387601776 cites W4225714363 @default.
- W4387601776 cites W4244539544 @default.
- W4387601776 cites W4248475352 @default.
- W4387601776 cites W4253375430 @default.
- W4387601776 cites W4280537879 @default.
- W4387601776 cites W4288079944 @default.
- W4387601776 cites W4308580448 @default.
- W4387601776 cites W4311546962 @default.
- W4387601776 cites W4312716853 @default.
- W4387601776 cites W4317802436 @default.
- W4387601776 cites W4365450536 @default.
- W4387601776 cites W4380359867 @default.
- W4387601776 cites W4380992331 @default.
- W4387601776 cites W4386247067 @default.
- W4387601776 cites W959651606 @default.
- W4387601776 doi "https://doi.org/10.1080/00107514.2023.2256085" @default.
- W4387601776 hasPublicationYear "2023" @default.
- W4387601776 type Work @default.
- W4387601776 citedByCount "0" @default.
- W4387601776 crossrefType "journal-article" @default.
- W4387601776 hasAuthorship W4387601776A5067398124 @default.
- W4387601776 hasConcept C111472728 @default.
- W4387601776 hasConcept C113471709 @default.
- W4387601776 hasConcept C121332964 @default.
- W4387601776 hasConcept C1276947 @default.
- W4387601776 hasConcept C132010649 @default.
- W4387601776 hasConcept C138885662 @default.
- W4387601776 hasConcept C145420912 @default.
- W4387601776 hasConcept C159249277 @default.
- W4387601776 hasConcept C166126730 @default.
- W4387601776 hasConcept C17744445 @default.
- W4387601776 hasConcept C199539241 @default.
- W4387601776 hasConcept C207297109 @default.
- W4387601776 hasConcept C2778044066 @default.
- W4387601776 hasConcept C33332235 @default.