Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387602316> ?p ?o ?g. }
- W4387602316 abstract "Introduction As the life expectancy of children with congenital heart disease (CHD) is rapidly increasing and the adult population with CHD is growing, there is an unmet need to improve clinical workflow and efficiency of analysis. Cardiovascular magnetic resonance (CMR) is a noninvasive imaging modality for monitoring patients with CHD. CMR exam is based on multiple breath-hold 2-dimensional (2D) cine acquisitions that should be precisely prescribed and is expert and institution dependent. Moreover, 2D cine images have relatively thick slices, which does not allow for isotropic delineation of ventricular structures. Thus, development of an isotropic 3D cine acquisition and automatic segmentation method is worthwhile to make CMR workflow straightforward and efficient, as the present work aims to establish. Methods Ninety-nine patients with many types of CHD were imaged using a non-angulated 3D cine CMR sequence covering the whole-heart and great vessels. Automatic supervised and semi-supervised deep-learning-based methods were developed for whole-heart segmentation of 3D cine images to separately delineate the cardiac structures, including both atria, both ventricles, aorta, pulmonary arteries, and superior and inferior vena cavae. The segmentation results derived from the two methods were compared with the manual segmentation in terms of Dice score, a degree of overlap agreement, and atrial and ventricular volume measurements. Results The semi-supervised method resulted in a better overlap agreement with the manual segmentation than the supervised method for all 8 structures (Dice score 83.23 ± 16.76% vs. 77.98 ± 19.64%; P -value ≤0.001). The mean difference error in atrial and ventricular volumetric measurements between manual segmentation and semi-supervised method was lower (bias ≤ 5.2 ml) than the supervised method (bias ≤ 10.1 ml). Discussion The proposed semi-supervised method is capable of cardiac segmentation and chamber volume quantification in a CHD population with wide anatomical variability. It accurately delineates the heart chambers and great vessels and can be used to accurately calculate ventricular and atrial volumes throughout the cardiac cycle. Such a segmentation method can reduce inter- and intra- observer variability and make CMR exams more standardized and efficient." @default.
- W4387602316 created "2023-10-14" @default.
- W4387602316 creator A5016289121 @default.
- W4387602316 creator A5016341241 @default.
- W4387602316 creator A5016512818 @default.
- W4387602316 creator A5032038257 @default.
- W4387602316 creator A5032499810 @default.
- W4387602316 creator A5040088150 @default.
- W4387602316 creator A5055312613 @default.
- W4387602316 creator A5060180812 @default.
- W4387602316 creator A5069054082 @default.
- W4387602316 creator A5069732992 @default.
- W4387602316 creator A5076251937 @default.
- W4387602316 creator A5081763875 @default.
- W4387602316 date "2023-10-13" @default.
- W4387602316 modified "2023-10-14" @default.
- W4387602316 title "Automated segmentation of 3D cine cardiovascular magnetic resonance imaging" @default.
- W4387602316 cites W1598227523 @default.
- W4387602316 cites W2026616100 @default.
- W4387602316 cites W2042099036 @default.
- W4387602316 cites W2064675550 @default.
- W4387602316 cites W2070689356 @default.
- W4387602316 cites W2071596963 @default.
- W4387602316 cites W2086297115 @default.
- W4387602316 cites W2088695600 @default.
- W4387602316 cites W2110485445 @default.
- W4387602316 cites W2146308017 @default.
- W4387602316 cites W2147673683 @default.
- W4387602316 cites W2156984851 @default.
- W4387602316 cites W2166474541 @default.
- W4387602316 cites W2194956247 @default.
- W4387602316 cites W2216298685 @default.
- W4387602316 cites W2266059378 @default.
- W4387602316 cites W2274227799 @default.
- W4387602316 cites W2394982463 @default.
- W4387602316 cites W2401938073 @default.
- W4387602316 cites W2575226059 @default.
- W4387602316 cites W2588773529 @default.
- W4387602316 cites W2803176574 @default.
- W4387602316 cites W2804047627 @default.
- W4387602316 cites W2810644003 @default.
- W4387602316 cites W2886943560 @default.
- W4387602316 cites W2892104854 @default.
- W4387602316 cites W2944902362 @default.
- W4387602316 cites W2969625172 @default.
- W4387602316 cites W3027763298 @default.
- W4387602316 cites W3101612813 @default.
- W4387602316 cites W3108392885 @default.
- W4387602316 cites W3112701542 @default.
- W4387602316 cites W3190435460 @default.
- W4387602316 cites W4221163766 @default.
- W4387602316 cites W4229977739 @default.
- W4387602316 cites W4252684946 @default.
- W4387602316 cites W4280653512 @default.
- W4387602316 cites W4321232185 @default.
- W4387602316 cites W4362223627 @default.
- W4387602316 doi "https://doi.org/10.3389/fcvm.2023.1167500" @default.
- W4387602316 hasPublicationYear "2023" @default.
- W4387602316 type Work @default.
- W4387602316 citedByCount "0" @default.
- W4387602316 crossrefType "journal-article" @default.
- W4387602316 hasAuthorship W4387602316A5016289121 @default.
- W4387602316 hasAuthorship W4387602316A5016341241 @default.
- W4387602316 hasAuthorship W4387602316A5016512818 @default.
- W4387602316 hasAuthorship W4387602316A5032038257 @default.
- W4387602316 hasAuthorship W4387602316A5032499810 @default.
- W4387602316 hasAuthorship W4387602316A5040088150 @default.
- W4387602316 hasAuthorship W4387602316A5055312613 @default.
- W4387602316 hasAuthorship W4387602316A5060180812 @default.
- W4387602316 hasAuthorship W4387602316A5069054082 @default.
- W4387602316 hasAuthorship W4387602316A5069732992 @default.
- W4387602316 hasAuthorship W4387602316A5076251937 @default.
- W4387602316 hasAuthorship W4387602316A5081763875 @default.
- W4387602316 hasBestOaLocation W43876023161 @default.
- W4387602316 hasConcept C126838900 @default.
- W4387602316 hasConcept C143409427 @default.
- W4387602316 hasConcept C154945302 @default.
- W4387602316 hasConcept C164705383 @default.
- W4387602316 hasConcept C2908647359 @default.
- W4387602316 hasConcept C41008148 @default.
- W4387602316 hasConcept C71924100 @default.
- W4387602316 hasConcept C89600930 @default.
- W4387602316 hasConcept C99454951 @default.
- W4387602316 hasConceptScore W4387602316C126838900 @default.
- W4387602316 hasConceptScore W4387602316C143409427 @default.
- W4387602316 hasConceptScore W4387602316C154945302 @default.
- W4387602316 hasConceptScore W4387602316C164705383 @default.
- W4387602316 hasConceptScore W4387602316C2908647359 @default.
- W4387602316 hasConceptScore W4387602316C41008148 @default.
- W4387602316 hasConceptScore W4387602316C71924100 @default.
- W4387602316 hasConceptScore W4387602316C89600930 @default.
- W4387602316 hasConceptScore W4387602316C99454951 @default.
- W4387602316 hasLocation W43876023161 @default.
- W4387602316 hasOpenAccess W4387602316 @default.
- W4387602316 hasPrimaryLocation W43876023161 @default.
- W4387602316 hasRelatedWork W1531601525 @default.
- W4387602316 hasRelatedWork W2006468016 @default.
- W4387602316 hasRelatedWork W2758277628 @default.
- W4387602316 hasRelatedWork W2935909890 @default.
- W4387602316 hasRelatedWork W2948807893 @default.