Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387602657> ?p ?o ?g. }
Showing items 1 to 58 of
58
with 100 items per page.
- W4387602657 endingPage "167" @default.
- W4387602657 startingPage "156" @default.
- W4387602657 abstract "Recent advancements in large foundation models have shown promising potential in the medical industry due to their flexible prompting capability. One such model, the Segment Anything Model (SAM), a prompt-driven segmentation model, has shown remarkable performance improvements, surpassing state-of-the-art approaches in medical image segmentation. However, existing methods primarily rely on tuning strategies that require extensive data or prior prompts tailored to the specific task, making it particularly challenging when only a limited number of data samples are available. In this paper, we propose a novel perspective on self-prompting in medical vision applications. Specifically, we harness the embedding space of SAM to prompt itself through a simple yet effective linear pixel-wise classifier. By preserving the encoding capabilities of the large model, the contextual information from its decoder, and leveraging its interactive promptability, we achieve competitive results on multiple datasets (i.e. improvement of more than 15% compared to fine-tuning the mask decoder using a few images). Our code is available at https://github.com/PeterYYZhang/few-shot-self-prompt-SAM" @default.
- W4387602657 created "2023-10-14" @default.
- W4387602657 creator A5027081164 @default.
- W4387602657 creator A5064666806 @default.
- W4387602657 creator A5077506787 @default.
- W4387602657 date "2023-10-14" @default.
- W4387602657 modified "2023-10-14" @default.
- W4387602657 title "Self-prompting Large Vision Models for Few-Shot Medical Image Segmentation" @default.
- W4387602657 cites W1901129140 @default.
- W4387602657 cites W2963946669 @default.
- W4387602657 cites W2997286550 @default.
- W4387602657 cites W3095314709 @default.
- W4387602657 cites W3102785203 @default.
- W4387602657 cites W3175581533 @default.
- W4387602657 cites W3199619301 @default.
- W4387602657 cites W3216552527 @default.
- W4387602657 cites W4295939506 @default.
- W4387602657 cites W4382567565 @default.
- W4387602657 doi "https://doi.org/10.1007/978-3-031-45857-6_16" @default.
- W4387602657 hasPublicationYear "2023" @default.
- W4387602657 type Work @default.
- W4387602657 citedByCount "0" @default.
- W4387602657 crossrefType "book-chapter" @default.
- W4387602657 hasAuthorship W4387602657A5027081164 @default.
- W4387602657 hasAuthorship W4387602657A5064666806 @default.
- W4387602657 hasAuthorship W4387602657A5077506787 @default.
- W4387602657 hasConcept C124504099 @default.
- W4387602657 hasConcept C154945302 @default.
- W4387602657 hasConcept C160633673 @default.
- W4387602657 hasConcept C31972630 @default.
- W4387602657 hasConcept C41008148 @default.
- W4387602657 hasConcept C41608201 @default.
- W4387602657 hasConcept C89600930 @default.
- W4387602657 hasConceptScore W4387602657C124504099 @default.
- W4387602657 hasConceptScore W4387602657C154945302 @default.
- W4387602657 hasConceptScore W4387602657C160633673 @default.
- W4387602657 hasConceptScore W4387602657C31972630 @default.
- W4387602657 hasConceptScore W4387602657C41008148 @default.
- W4387602657 hasConceptScore W4387602657C41608201 @default.
- W4387602657 hasConceptScore W4387602657C89600930 @default.
- W4387602657 hasLocation W43876026571 @default.
- W4387602657 hasOpenAccess W4387602657 @default.
- W4387602657 hasPrimaryLocation W43876026571 @default.
- W4387602657 hasRelatedWork W1522196789 @default.
- W4387602657 hasRelatedWork W2085033728 @default.
- W4387602657 hasRelatedWork W2119567889 @default.
- W4387602657 hasRelatedWork W2171299904 @default.
- W4387602657 hasRelatedWork W2345479200 @default.
- W4387602657 hasRelatedWork W2549990292 @default.
- W4387602657 hasRelatedWork W2922442631 @default.
- W4387602657 hasRelatedWork W4285411112 @default.
- W4387602657 hasRelatedWork W2183306018 @default.
- W4387602657 hasRelatedWork W3111219495 @default.
- W4387602657 isParatext "false" @default.
- W4387602657 isRetracted "false" @default.
- W4387602657 workType "book-chapter" @default.