Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387602994> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4387602994 endingPage "72" @default.
- W4387602994 startingPage "63" @default.
- W4387602994 abstract "Poor performance of quantitative analysis in histopathological Whole Slide Images (WSI) has been a significant obstacle in clinical practice. Annotating large-scale WSIs manually is a demanding and time-consuming task, unlikely to yield the expected results when used for fully supervised learning systems. Rarely observed disease patterns and large differences in object scales are difficult to model through conventional patient intake. Prior methods either fall back to direct disease classification, which only requires learning a few factors per image, or report on average image segmentation performance, which is highly biased towards majority observations. Geometric image augmentation is commonly used to improve robustness for average case predictions and to enrich limited datasets. So far no method provided sampling of a realistic posterior distribution to improve stability, e.g. for the segmentation of imbalanced objects within images. Therefore, we propose a new approach, based on diffusion models, which can enrich an imbalanced dataset with plausible examples from underrepresented groups by conditioning on segmentation maps. Our method can simply expand limited clinical datasets making them suitable to train machine learning pipelines, and provides an interpretable and human-controllable way of generating histopathology images that are indistinguishable from real ones to human experts. We validate our findings on two datasets, one from the public domain and one from a Kidney Transplant study. $$^{1}$$ (The source code and trained models will be publicly available at the time of the conference, on huggingface and github. )" @default.
- W4387602994 created "2023-10-14" @default.
- W4387602994 creator A5003001610 @default.
- W4387602994 creator A5014649269 @default.
- W4387602994 creator A5050397173 @default.
- W4387602994 creator A5068565867 @default.
- W4387602994 creator A5070383977 @default.
- W4387602994 creator A5078127596 @default.
- W4387602994 date "2023-10-14" @default.
- W4387602994 modified "2023-10-18" @default.
- W4387602994 title "Realistic Data Enrichment for Robust Image Segmentation in Histopathology" @default.
- W4387602994 cites W1901129140 @default.
- W4387602994 cites W1991860199 @default.
- W4387602994 cites W2592905743 @default.
- W4387602994 cites W2716665989 @default.
- W4387602994 cites W2885343725 @default.
- W4387602994 cites W2963150697 @default.
- W4387602994 cites W2963271314 @default.
- W4387602994 cites W2974825848 @default.
- W4387602994 cites W2979411406 @default.
- W4387602994 cites W2981994674 @default.
- W4387602994 cites W3016970897 @default.
- W4387602994 cites W3092325964 @default.
- W4387602994 cites W3093046161 @default.
- W4387602994 cites W3096831136 @default.
- W4387602994 cites W3098917838 @default.
- W4387602994 cites W3112701542 @default.
- W4387602994 cites W3165730810 @default.
- W4387602994 cites W3203211016 @default.
- W4387602994 cites W4200042385 @default.
- W4387602994 cites W4280514269 @default.
- W4387602994 cites W4283781937 @default.
- W4387602994 cites W4312933868 @default.
- W4387602994 cites W4319301041 @default.
- W4387602994 doi "https://doi.org/10.1007/978-3-031-45857-6_7" @default.
- W4387602994 hasPublicationYear "2023" @default.
- W4387602994 type Work @default.
- W4387602994 citedByCount "0" @default.
- W4387602994 crossrefType "book-chapter" @default.
- W4387602994 hasAuthorship W4387602994A5003001610 @default.
- W4387602994 hasAuthorship W4387602994A5014649269 @default.
- W4387602994 hasAuthorship W4387602994A5050397173 @default.
- W4387602994 hasAuthorship W4387602994A5068565867 @default.
- W4387602994 hasAuthorship W4387602994A5070383977 @default.
- W4387602994 hasAuthorship W4387602994A5078127596 @default.
- W4387602994 hasConcept C104317684 @default.
- W4387602994 hasConcept C119857082 @default.
- W4387602994 hasConcept C124504099 @default.
- W4387602994 hasConcept C153180895 @default.
- W4387602994 hasConcept C154945302 @default.
- W4387602994 hasConcept C17744445 @default.
- W4387602994 hasConcept C185592680 @default.
- W4387602994 hasConcept C199539241 @default.
- W4387602994 hasConcept C2776650193 @default.
- W4387602994 hasConcept C2777522853 @default.
- W4387602994 hasConcept C41008148 @default.
- W4387602994 hasConcept C55493867 @default.
- W4387602994 hasConcept C63479239 @default.
- W4387602994 hasConcept C89600930 @default.
- W4387602994 hasConceptScore W4387602994C104317684 @default.
- W4387602994 hasConceptScore W4387602994C119857082 @default.
- W4387602994 hasConceptScore W4387602994C124504099 @default.
- W4387602994 hasConceptScore W4387602994C153180895 @default.
- W4387602994 hasConceptScore W4387602994C154945302 @default.
- W4387602994 hasConceptScore W4387602994C17744445 @default.
- W4387602994 hasConceptScore W4387602994C185592680 @default.
- W4387602994 hasConceptScore W4387602994C199539241 @default.
- W4387602994 hasConceptScore W4387602994C2776650193 @default.
- W4387602994 hasConceptScore W4387602994C2777522853 @default.
- W4387602994 hasConceptScore W4387602994C41008148 @default.
- W4387602994 hasConceptScore W4387602994C55493867 @default.
- W4387602994 hasConceptScore W4387602994C63479239 @default.
- W4387602994 hasConceptScore W4387602994C89600930 @default.
- W4387602994 hasLocation W43876029941 @default.
- W4387602994 hasOpenAccess W4387602994 @default.
- W4387602994 hasPrimaryLocation W43876029941 @default.
- W4387602994 hasRelatedWork W1522196789 @default.
- W4387602994 hasRelatedWork W1996530509 @default.
- W4387602994 hasRelatedWork W2077790809 @default.
- W4387602994 hasRelatedWork W2376554934 @default.
- W4387602994 hasRelatedWork W2389515972 @default.
- W4387602994 hasRelatedWork W2794103424 @default.
- W4387602994 hasRelatedWork W2906246018 @default.
- W4387602994 hasRelatedWork W3028317537 @default.
- W4387602994 hasRelatedWork W3165349357 @default.
- W4387602994 hasRelatedWork W4245435724 @default.
- W4387602994 isParatext "false" @default.
- W4387602994 isRetracted "false" @default.
- W4387602994 workType "book-chapter" @default.