Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387603753> ?p ?o ?g. }
- W4387603753 endingPage "105493" @default.
- W4387603753 startingPage "105493" @default.
- W4387603753 abstract "Human ailments create an impact in altering the significant metabolism activities of the body irrespective of various parts. Dysarthric speech is commonly known as Parkinson's disease (PD), where most of people suffer from voice impairment. Moreover, the voice analysis could help the clinicians to detect the disease effectively. Since it affects with neurological activities, the existing models are though render better results, but it cannot be able to meet up the desired outcomes. While diagnosing the disease by the clinicians, the abnormality variations in the voice signal become complicated. Due to the occurrence of unwanted interpretations, it affects the quality of the speech/voice signal. In order to meet this prerequisite, a novel diagnosing method is proposed. The proposed model implements the three-stage classification framework termed as Optimized ResNet and GoogleNet and Radial basis function-Gated Recurrent Unit (ORG-RGRU). The signals are garnered and decomposed using Empirical Wavelet Transform (EWT). The decomposed signal is given to classification in three different ways. Firstly, the decomposed signal is fed into Short-Time Fourier transform (STFT) features that are given into ORG-RGRU, which yields one classified output. Secondly, the relevant features are retrieved by adopting Mel-Frequency Cepstral Coefficients (MFCC), Cepstral and Spectral features, principle speech features, and pitch features (zero frequency response filter). Then, the weighted features are obtained with the optimal weight by the Adaptive Controlling Parameters-based African Vultures Optimization Algorithm (ACP-AVOA). Thus, the optimal features are fed into the Optimized Radial basis function-Gated Recurrent Unit (ORGRU) to exhibit the second classified outcome. Thirdly, the extracted STFT features are given into ResNet and GoogleNet, where the deep features are attained that are given to ORGRU. In order to return the optimal value, the hyper parameters in ResNet, GoogleNet, RBF and GRU are tuned optimally by ACP-AVOA. The high ranking is taken for determining the final classified results. The validation takes place among the developed model and existing conventional approaches. The main finding of the developed model shows 95% and 91% regarding accuracy and Matthews Correlation Coefficient (MCC)." @default.
- W4387603753 created "2023-10-14" @default.
- W4387603753 creator A5037663112 @default.
- W4387603753 creator A5067460565 @default.
- W4387603753 date "2024-02-01" @default.
- W4387603753 modified "2023-10-14" @default.
- W4387603753 title "ORG-RGRU: An automated diagnosed model for multiple diseases by heuristically based optimized deep learning using speech/voice signal" @default.
- W4387603753 cites W1996987108 @default.
- W4387603753 cites W2040767951 @default.
- W4387603753 cites W2082285307 @default.
- W4387603753 cites W2306115793 @default.
- W4387603753 cites W2402137650 @default.
- W4387603753 cites W2403557608 @default.
- W4387603753 cites W2573056035 @default.
- W4387603753 cites W2605579287 @default.
- W4387603753 cites W2728922832 @default.
- W4387603753 cites W2895411068 @default.
- W4387603753 cites W2903080295 @default.
- W4387603753 cites W2919979744 @default.
- W4387603753 cites W2944182071 @default.
- W4387603753 cites W3004815729 @default.
- W4387603753 cites W3007907254 @default.
- W4387603753 cites W3011778067 @default.
- W4387603753 cites W3018435935 @default.
- W4387603753 cites W3034904993 @default.
- W4387603753 cites W3049437106 @default.
- W4387603753 cites W3089620658 @default.
- W4387603753 cites W3095114157 @default.
- W4387603753 cites W3098964993 @default.
- W4387603753 cites W3112347997 @default.
- W4387603753 cites W3124183586 @default.
- W4387603753 cites W3133586647 @default.
- W4387603753 cites W3135760902 @default.
- W4387603753 cites W3138918961 @default.
- W4387603753 cites W3155926737 @default.
- W4387603753 cites W3163903840 @default.
- W4387603753 cites W3170804538 @default.
- W4387603753 cites W3187051964 @default.
- W4387603753 cites W3188283161 @default.
- W4387603753 cites W3194004721 @default.
- W4387603753 cites W3199999289 @default.
- W4387603753 cites W3201230177 @default.
- W4387603753 cites W3204675901 @default.
- W4387603753 cites W3209560623 @default.
- W4387603753 cites W4221082242 @default.
- W4387603753 cites W4224885307 @default.
- W4387603753 cites W4226062016 @default.
- W4387603753 cites W4229011207 @default.
- W4387603753 cites W4293192728 @default.
- W4387603753 cites W4378619666 @default.
- W4387603753 doi "https://doi.org/10.1016/j.bspc.2023.105493" @default.
- W4387603753 hasPublicationYear "2024" @default.
- W4387603753 type Work @default.
- W4387603753 citedByCount "0" @default.
- W4387603753 crossrefType "journal-article" @default.
- W4387603753 hasAuthorship W4387603753A5037663112 @default.
- W4387603753 hasAuthorship W4387603753A5067460565 @default.
- W4387603753 hasConcept C100515483 @default.
- W4387603753 hasConcept C102519508 @default.
- W4387603753 hasConcept C106131492 @default.
- W4387603753 hasConcept C134306372 @default.
- W4387603753 hasConcept C151989614 @default.
- W4387603753 hasConcept C153180895 @default.
- W4387603753 hasConcept C154945302 @default.
- W4387603753 hasConcept C166386157 @default.
- W4387603753 hasConcept C199360897 @default.
- W4387603753 hasConcept C203024314 @default.
- W4387603753 hasConcept C2779843651 @default.
- W4387603753 hasConcept C28490314 @default.
- W4387603753 hasConcept C31972630 @default.
- W4387603753 hasConcept C33923547 @default.
- W4387603753 hasConcept C41008148 @default.
- W4387603753 hasConcept C52622490 @default.
- W4387603753 hasConcept C88485024 @default.
- W4387603753 hasConceptScore W4387603753C100515483 @default.
- W4387603753 hasConceptScore W4387603753C102519508 @default.
- W4387603753 hasConceptScore W4387603753C106131492 @default.
- W4387603753 hasConceptScore W4387603753C134306372 @default.
- W4387603753 hasConceptScore W4387603753C151989614 @default.
- W4387603753 hasConceptScore W4387603753C153180895 @default.
- W4387603753 hasConceptScore W4387603753C154945302 @default.
- W4387603753 hasConceptScore W4387603753C166386157 @default.
- W4387603753 hasConceptScore W4387603753C199360897 @default.
- W4387603753 hasConceptScore W4387603753C203024314 @default.
- W4387603753 hasConceptScore W4387603753C2779843651 @default.
- W4387603753 hasConceptScore W4387603753C28490314 @default.
- W4387603753 hasConceptScore W4387603753C31972630 @default.
- W4387603753 hasConceptScore W4387603753C33923547 @default.
- W4387603753 hasConceptScore W4387603753C41008148 @default.
- W4387603753 hasConceptScore W4387603753C52622490 @default.
- W4387603753 hasConceptScore W4387603753C88485024 @default.
- W4387603753 hasLocation W43876037531 @default.
- W4387603753 hasOpenAccess W4387603753 @default.
- W4387603753 hasPrimaryLocation W43876037531 @default.
- W4387603753 hasRelatedWork W1497065097 @default.
- W4387603753 hasRelatedWork W1980297060 @default.
- W4387603753 hasRelatedWork W2018086531 @default.
- W4387603753 hasRelatedWork W2125446021 @default.