Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387607842> ?p ?o ?g. }
Showing items 1 to 77 of
77
with 100 items per page.
- W4387607842 abstract "Abstract Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is an emerging and promising paradigm for cognitive computing. At its core, HD/VSA is characterized by its distinctive approach to representing information using high-dimensional random vectors. The recent surge in research within this field gains momentum from its remarkable computational efficiency and ability to excel in few-shot learning scenarios. Nonetheless, the current literature is deficient in providing a comprehensive comparative analysis of various methodologies since each method uses a different benchmark to evaluate its performance. This gap obstructs the monitoring of the field's state-of-the-art advancements and acts as a significant barrier to its overall progress. To address this gap, this review not only offers a conceptual overview of the latest literature but also introduces a comprehensive comparative study of HD/VSA classification techniques. Our exploration starts with an overview of the strategies proposed to encode information as high-dimensional vectors. These vectors serve as integral components in the construction of classification models. Furthermore, we evaluate diverse classification methods as proposed in the existing literature. This evaluation encompasses techniques such as retraining and regenerative training to augment the model's performance. To conclude our study, we present a comprehensive empirical study. This study serves as an in-depth analysis, systematically comparing various HD/VSA classification approaches using two benchmarks, the first being a set of seven popular datasets used in HD/VSA and the second consisting of 121 datasets extracted from the UCI Machine Learning repository.To facilitate future research on classification with HD/VSA, we open-sourced the benchmarking and the implementations of the methods we review. Our findings yield significant insights. Firstly, encodings based on key-value pairs emerge as optimal choices, boasting superior accuracy while maintaining high efficiency. Secondly, iterative adaptive methods demonstrate remarkable efficacy, potentially complemented by a regenerative strategy depending on the specific problem. Moreover, we show how HD/VSA is able to generalize while training with a limited number of training instances. Lastly, we demonstrate the robustness of HD/VSA methodologies by subjecting the model memory to a large number of bit-flips. Our results illustrate that the model's performance remains reasonably stable until the occurrence of 40% of bit flips, where the model's performance is drastically degraded. Overall, we have performed a thorough performance evaluation on different methods and have observed a positive trend in both evaluation and execution time." @default.
- W4387607842 created "2023-10-14" @default.
- W4387607842 creator A5013401821 @default.
- W4387607842 creator A5019614336 @default.
- W4387607842 creator A5025100790 @default.
- W4387607842 creator A5036606463 @default.
- W4387607842 creator A5042512979 @default.
- W4387607842 date "2023-10-13" @default.
- W4387607842 modified "2023-10-14" @default.
- W4387607842 title "Classification using Hyperdimensional Computing: A~Review~with~Comparative Analysis" @default.
- W4387607842 doi "https://doi.org/10.21203/rs.3.rs-3425561/v1" @default.
- W4387607842 hasPublicationYear "2023" @default.
- W4387607842 type Work @default.
- W4387607842 citedByCount "0" @default.
- W4387607842 crossrefType "posted-content" @default.
- W4387607842 hasAuthorship W4387607842A5013401821 @default.
- W4387607842 hasAuthorship W4387607842A5019614336 @default.
- W4387607842 hasAuthorship W4387607842A5025100790 @default.
- W4387607842 hasAuthorship W4387607842A5036606463 @default.
- W4387607842 hasAuthorship W4387607842A5042512979 @default.
- W4387607842 hasBestOaLocation W43876078421 @default.
- W4387607842 hasConcept C104317684 @default.
- W4387607842 hasConcept C119857082 @default.
- W4387607842 hasConcept C12267149 @default.
- W4387607842 hasConcept C13280743 @default.
- W4387607842 hasConcept C144133560 @default.
- W4387607842 hasConcept C154945302 @default.
- W4387607842 hasConcept C155202549 @default.
- W4387607842 hasConcept C177264268 @default.
- W4387607842 hasConcept C185592680 @default.
- W4387607842 hasConcept C185798385 @default.
- W4387607842 hasConcept C199360897 @default.
- W4387607842 hasConcept C202444582 @default.
- W4387607842 hasConcept C205649164 @default.
- W4387607842 hasConcept C2522767166 @default.
- W4387607842 hasConcept C2778712577 @default.
- W4387607842 hasConcept C33923547 @default.
- W4387607842 hasConcept C41008148 @default.
- W4387607842 hasConcept C55493867 @default.
- W4387607842 hasConcept C66746571 @default.
- W4387607842 hasConcept C9652623 @default.
- W4387607842 hasConceptScore W4387607842C104317684 @default.
- W4387607842 hasConceptScore W4387607842C119857082 @default.
- W4387607842 hasConceptScore W4387607842C12267149 @default.
- W4387607842 hasConceptScore W4387607842C13280743 @default.
- W4387607842 hasConceptScore W4387607842C144133560 @default.
- W4387607842 hasConceptScore W4387607842C154945302 @default.
- W4387607842 hasConceptScore W4387607842C155202549 @default.
- W4387607842 hasConceptScore W4387607842C177264268 @default.
- W4387607842 hasConceptScore W4387607842C185592680 @default.
- W4387607842 hasConceptScore W4387607842C185798385 @default.
- W4387607842 hasConceptScore W4387607842C199360897 @default.
- W4387607842 hasConceptScore W4387607842C202444582 @default.
- W4387607842 hasConceptScore W4387607842C205649164 @default.
- W4387607842 hasConceptScore W4387607842C2522767166 @default.
- W4387607842 hasConceptScore W4387607842C2778712577 @default.
- W4387607842 hasConceptScore W4387607842C33923547 @default.
- W4387607842 hasConceptScore W4387607842C41008148 @default.
- W4387607842 hasConceptScore W4387607842C55493867 @default.
- W4387607842 hasConceptScore W4387607842C66746571 @default.
- W4387607842 hasConceptScore W4387607842C9652623 @default.
- W4387607842 hasLocation W43876078421 @default.
- W4387607842 hasOpenAccess W4387607842 @default.
- W4387607842 hasPrimaryLocation W43876078421 @default.
- W4387607842 hasRelatedWork W2006651773 @default.
- W4387607842 hasRelatedWork W2014369232 @default.
- W4387607842 hasRelatedWork W2027050655 @default.
- W4387607842 hasRelatedWork W2050078012 @default.
- W4387607842 hasRelatedWork W2360307734 @default.
- W4387607842 hasRelatedWork W2468279273 @default.
- W4387607842 hasRelatedWork W3028244590 @default.
- W4387607842 hasRelatedWork W3118581235 @default.
- W4387607842 hasRelatedWork W3122042562 @default.
- W4387607842 hasRelatedWork W4254349500 @default.
- W4387607842 isParatext "false" @default.
- W4387607842 isRetracted "false" @default.
- W4387607842 workType "article" @default.