Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387608004> ?p ?o ?g. }
Showing items 1 to 79 of
79
with 100 items per page.
- W4387608004 abstract "Introduction With the growing concern over carbon emissions and their impact on climate change, achieving carbon neutrality has become a critical objective in various sectors, including sports event management. Artificial intelligence (AI) offers promising solutions for addressing environmental challenges and enhancing sustainability. This paper presents a novel approach to developing AI-powered carbon neutrality strategies for sports event management. Methods In this research, we combine the STIRPAT model for analyzing the influence of population, wealth, and technology on carbon emissions in sports events with a GRU neural network for predicting future emissions trends and enhance the model's accuracy using transfer learning, creating a comprehensive approach for carbon emissions analysis in sports event management. Results Our experimental results demonstrate the efficacy of the proposed approach. The combination of the STIRPAT model, GRU neural network, and transfer learning outperforms alternative methods. This success highlights the model's ability to predict carbon emissions in sports events accurately and to develop effective carbon neutrality strategies. Discussion The significance of this research lies in its potential to empower sports event managers with a data-driven approach to carbon emissions management. By understanding the key drivers and leveraging AI for prediction and strategy development, the sports industry can transition towards greater sustainability and environmental friendliness. This paper contributes to the broader effort of mitigating carbon emissions and addressing climate change concerns across various domains, ultimately leading to a more sustainable future." @default.
- W4387608004 created "2023-10-14" @default.
- W4387608004 creator A5043073797 @default.
- W4387608004 date "2023-10-13" @default.
- W4387608004 modified "2023-10-14" @default.
- W4387608004 title "Artificial intelligence carbon neutrality strategy in sports event management based on STIRPAT-GRU and transfer learning" @default.
- W4387608004 cites W2582264034 @default.
- W4387608004 cites W2605882195 @default.
- W4387608004 cites W2920610558 @default.
- W4387608004 cites W2951167394 @default.
- W4387608004 cites W2952914017 @default.
- W4387608004 cites W2968400427 @default.
- W4387608004 cites W3030889468 @default.
- W4387608004 cites W3048842719 @default.
- W4387608004 cites W3101012758 @default.
- W4387608004 cites W3118812637 @default.
- W4387608004 cites W3134101959 @default.
- W4387608004 cites W3153932301 @default.
- W4387608004 cites W3167145731 @default.
- W4387608004 cites W3167214584 @default.
- W4387608004 cites W3179512715 @default.
- W4387608004 cites W3183441755 @default.
- W4387608004 cites W4214670148 @default.
- W4387608004 cites W4221109996 @default.
- W4387608004 cites W4223578717 @default.
- W4387608004 cites W4228999457 @default.
- W4387608004 cites W4286250636 @default.
- W4387608004 cites W4289515924 @default.
- W4387608004 cites W4294763176 @default.
- W4387608004 cites W4298009510 @default.
- W4387608004 cites W4298141095 @default.
- W4387608004 cites W4313251168 @default.
- W4387608004 cites W4319165877 @default.
- W4387608004 doi "https://doi.org/10.3389/fevo.2023.1275703" @default.
- W4387608004 hasPublicationYear "2023" @default.
- W4387608004 type Work @default.
- W4387608004 citedByCount "0" @default.
- W4387608004 crossrefType "journal-article" @default.
- W4387608004 hasAuthorship W4387608004A5043073797 @default.
- W4387608004 hasBestOaLocation W43876080041 @default.
- W4387608004 hasConcept C107826830 @default.
- W4387608004 hasConcept C126172416 @default.
- W4387608004 hasConcept C132651083 @default.
- W4387608004 hasConcept C134560507 @default.
- W4387608004 hasConcept C162324750 @default.
- W4387608004 hasConcept C18903297 @default.
- W4387608004 hasConcept C39432304 @default.
- W4387608004 hasConcept C41008148 @default.
- W4387608004 hasConcept C47737302 @default.
- W4387608004 hasConcept C66204764 @default.
- W4387608004 hasConcept C86803240 @default.
- W4387608004 hasConceptScore W4387608004C107826830 @default.
- W4387608004 hasConceptScore W4387608004C126172416 @default.
- W4387608004 hasConceptScore W4387608004C132651083 @default.
- W4387608004 hasConceptScore W4387608004C134560507 @default.
- W4387608004 hasConceptScore W4387608004C162324750 @default.
- W4387608004 hasConceptScore W4387608004C18903297 @default.
- W4387608004 hasConceptScore W4387608004C39432304 @default.
- W4387608004 hasConceptScore W4387608004C41008148 @default.
- W4387608004 hasConceptScore W4387608004C47737302 @default.
- W4387608004 hasConceptScore W4387608004C66204764 @default.
- W4387608004 hasConceptScore W4387608004C86803240 @default.
- W4387608004 hasLocation W43876080041 @default.
- W4387608004 hasOpenAccess W4387608004 @default.
- W4387608004 hasPrimaryLocation W43876080041 @default.
- W4387608004 hasRelatedWork W2008658478 @default.
- W4387608004 hasRelatedWork W2474431918 @default.
- W4387608004 hasRelatedWork W3184145481 @default.
- W4387608004 hasRelatedWork W3211193644 @default.
- W4387608004 hasRelatedWork W4214769718 @default.
- W4387608004 hasRelatedWork W4294809877 @default.
- W4387608004 hasRelatedWork W4319599352 @default.
- W4387608004 hasRelatedWork W4380930417 @default.
- W4387608004 hasRelatedWork W4385737535 @default.
- W4387608004 hasRelatedWork W2898107337 @default.
- W4387608004 hasVolume "11" @default.
- W4387608004 isParatext "false" @default.
- W4387608004 isRetracted "false" @default.
- W4387608004 workType "article" @default.