Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387608858> ?p ?o ?g. }
Showing items 1 to 59 of
59
with 100 items per page.
- W4387608858 endingPage "811" @default.
- W4387608858 startingPage "801" @default.
- W4387608858 abstract "Diabetes can cause a disease known as diabetic peripheral neuropathy (DPN), which affects the blood vessels and nerves in the legs and feet. This condition can result in plantar foot ulcers and muscular weakness. Detecting DPN early stage is crucial so patients can receive early treatment before their disease worsens. Most technology that detects this disease is usually expensive, like an Electromyography machine (EMG). But, with the increasing popularity of machine learning classification in the health sciences, DPN can be identified early by producing a low-cost equipment. This study aimed to develop a low-cost surface EMG (sEMG) system to detect electrical activity in the lower limb muscles and classify healthy and diabetic subjects during muscle fatigue using K-Nearest Neighbors (KNN) and Artificial Neural Networks (ANN) as two methods of machine learning technique. This study used Muscle Sensor V3 as sEMG to record the signal and extract using time domain feature extraction before classification. In KNN, 1–10 values (K) are used, while in ANN, 1–10 values of the number of hidden neurons are used to compare the classification performance. The result shows that ANN is suitable compared to KNN with the method used in this study. ANN algorithm performs better using four hidden neurons with an accuracy of 100% for the training and testing process. The study can conclude that this low-cost sEMG system, with the help of ANN, can effectively classify two subjects (healthy and diabetic) according to the EMG data obtained. This system can help to identify any diabetes neuropathy at an early stage and able to prevent lower limb complications related to the disease." @default.
- W4387608858 created "2023-10-14" @default.
- W4387608858 creator A5048317098 @default.
- W4387608858 creator A5065312557 @default.
- W4387608858 date "2023-10-13" @default.
- W4387608858 modified "2023-10-14" @default.
- W4387608858 title "Machine Learning Technique to Classify EMG Signal for Diabetes Person" @default.
- W4387608858 doi "https://doi.org/10.15379/ijmst.v10i1.2665" @default.
- W4387608858 hasPublicationYear "2023" @default.
- W4387608858 type Work @default.
- W4387608858 citedByCount "0" @default.
- W4387608858 crossrefType "journal-article" @default.
- W4387608858 hasAuthorship W4387608858A5048317098 @default.
- W4387608858 hasAuthorship W4387608858A5065312557 @default.
- W4387608858 hasBestOaLocation W43876088581 @default.
- W4387608858 hasConcept C108583219 @default.
- W4387608858 hasConcept C119857082 @default.
- W4387608858 hasConcept C153180895 @default.
- W4387608858 hasConcept C154945302 @default.
- W4387608858 hasConcept C199360897 @default.
- W4387608858 hasConcept C2777515770 @default.
- W4387608858 hasConcept C2779843651 @default.
- W4387608858 hasConcept C41008148 @default.
- W4387608858 hasConcept C50644808 @default.
- W4387608858 hasConcept C52622490 @default.
- W4387608858 hasConcept C71924100 @default.
- W4387608858 hasConcept C99508421 @default.
- W4387608858 hasConceptScore W4387608858C108583219 @default.
- W4387608858 hasConceptScore W4387608858C119857082 @default.
- W4387608858 hasConceptScore W4387608858C153180895 @default.
- W4387608858 hasConceptScore W4387608858C154945302 @default.
- W4387608858 hasConceptScore W4387608858C199360897 @default.
- W4387608858 hasConceptScore W4387608858C2777515770 @default.
- W4387608858 hasConceptScore W4387608858C2779843651 @default.
- W4387608858 hasConceptScore W4387608858C41008148 @default.
- W4387608858 hasConceptScore W4387608858C50644808 @default.
- W4387608858 hasConceptScore W4387608858C52622490 @default.
- W4387608858 hasConceptScore W4387608858C71924100 @default.
- W4387608858 hasConceptScore W4387608858C99508421 @default.
- W4387608858 hasIssue "1" @default.
- W4387608858 hasLocation W43876088581 @default.
- W4387608858 hasOpenAccess W4387608858 @default.
- W4387608858 hasPrimaryLocation W43876088581 @default.
- W4387608858 hasRelatedWork W1874485175 @default.
- W4387608858 hasRelatedWork W1992153410 @default.
- W4387608858 hasRelatedWork W2006061919 @default.
- W4387608858 hasRelatedWork W2141253262 @default.
- W4387608858 hasRelatedWork W2376139493 @default.
- W4387608858 hasRelatedWork W2386293158 @default.
- W4387608858 hasRelatedWork W2433638048 @default.
- W4387608858 hasRelatedWork W2998716555 @default.
- W4387608858 hasRelatedWork W3156756500 @default.
- W4387608858 hasRelatedWork W4282981700 @default.
- W4387608858 hasVolume "10" @default.
- W4387608858 isParatext "false" @default.
- W4387608858 isRetracted "false" @default.
- W4387608858 workType "article" @default.