Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387608977> ?p ?o ?g. }
- W4387608977 abstract "Abstract We introduce and compare computational techniques for sharp extreme event probability estimates in stochastic differential equations with small additive Gaussian noise. In particular, we focus on strategies that are scalable, i.e. their efficiency does not degrade upon temporal and possibly spatial refinement. For that purpose, we extend algorithms based on the Laplace method for estimating the probability of an extreme event to infinite dimensional path space. The method estimates the limiting exponential scaling using a single realization of the random variable, the large deviation minimizer. Finding this minimizer amounts to solving an optimization problem governed by a differential equation. The probability estimate becomes sharp when it additionally includes prefactor information, which necessitates computing the determinant of a second derivative operator to evaluate a Gaussian integral around the minimizer. We present an approach in infinite dimensions based on Fredholm determinants, and develop numerical algorithms to compute these determinants efficiently for the high-dimensional systems that arise upon discretization. We also give an interpretation of this approach using Gaussian process covariances and transition tubes. An example model problem, for which we provide an open-source python implementation, is used throughout the paper to illustrate all methods discussed. To study the performance of the methods, we consider examples of stochastic differential and stochastic partial differential equations, including the randomly forced incompressible three-dimensional Navier–Stokes equations." @default.
- W4387608977 created "2023-10-14" @default.
- W4387608977 creator A5012373865 @default.
- W4387608977 creator A5017531939 @default.
- W4387608977 creator A5032805069 @default.
- W4387608977 creator A5084177125 @default.
- W4387608977 date "2023-10-13" @default.
- W4387608977 modified "2023-10-14" @default.
- W4387608977 title "Scalable methods for computing sharp extreme event probabilities in infinite-dimensional stochastic systems" @default.
- W4387608977 cites W1122034225 @default.
- W4387608977 cites W1506690472 @default.
- W4387608977 cites W1963649399 @default.
- W4387608977 cites W1964167118 @default.
- W4387608977 cites W1965777485 @default.
- W4387608977 cites W1966893379 @default.
- W4387608977 cites W1967134278 @default.
- W4387608977 cites W1972195088 @default.
- W4387608977 cites W1985462363 @default.
- W4387608977 cites W1987154173 @default.
- W4387608977 cites W1999091229 @default.
- W4387608977 cites W1999768690 @default.
- W4387608977 cites W2018383942 @default.
- W4387608977 cites W2025774046 @default.
- W4387608977 cites W2036213650 @default.
- W4387608977 cites W2037315394 @default.
- W4387608977 cites W2043964142 @default.
- W4387608977 cites W2048588851 @default.
- W4387608977 cites W2054107212 @default.
- W4387608977 cites W2059735442 @default.
- W4387608977 cites W2067956344 @default.
- W4387608977 cites W2073285827 @default.
- W4387608977 cites W2073897249 @default.
- W4387608977 cites W2074937619 @default.
- W4387608977 cites W2077087555 @default.
- W4387608977 cites W2078792326 @default.
- W4387608977 cites W2078882674 @default.
- W4387608977 cites W2081217256 @default.
- W4387608977 cites W2106578604 @default.
- W4387608977 cites W2116822454 @default.
- W4387608977 cites W2117756735 @default.
- W4387608977 cites W2125916088 @default.
- W4387608977 cites W2167482893 @default.
- W4387608977 cites W2167948695 @default.
- W4387608977 cites W2168202098 @default.
- W4387608977 cites W2204514798 @default.
- W4387608977 cites W2328226763 @default.
- W4387608977 cites W2338816311 @default.
- W4387608977 cites W2484646121 @default.
- W4387608977 cites W2605625916 @default.
- W4387608977 cites W2745055376 @default.
- W4387608977 cites W2756013113 @default.
- W4387608977 cites W2951868104 @default.
- W4387608977 cites W2963202249 @default.
- W4387608977 cites W2963784336 @default.
- W4387608977 cites W2963914861 @default.
- W4387608977 cites W2968924739 @default.
- W4387608977 cites W3017233986 @default.
- W4387608977 cites W3019846098 @default.
- W4387608977 cites W3092882822 @default.
- W4387608977 cites W3099010780 @default.
- W4387608977 cites W3100944745 @default.
- W4387608977 cites W3103293640 @default.
- W4387608977 cites W3103897655 @default.
- W4387608977 cites W3104254611 @default.
- W4387608977 cites W3105123535 @default.
- W4387608977 cites W3123743774 @default.
- W4387608977 cites W3129490551 @default.
- W4387608977 cites W3133726198 @default.
- W4387608977 cites W3133869517 @default.
- W4387608977 cites W3166250015 @default.
- W4387608977 cites W3173056134 @default.
- W4387608977 cites W3175555341 @default.
- W4387608977 cites W3193354133 @default.
- W4387608977 cites W3194997793 @default.
- W4387608977 cites W3195498616 @default.
- W4387608977 cites W3209610702 @default.
- W4387608977 cites W3217633079 @default.
- W4387608977 cites W400678491 @default.
- W4387608977 cites W4213087029 @default.
- W4387608977 cites W4220853527 @default.
- W4387608977 cites W4229370348 @default.
- W4387608977 cites W4242695360 @default.
- W4387608977 cites W4249520102 @default.
- W4387608977 cites W4250589301 @default.
- W4387608977 cites W4283212091 @default.
- W4387608977 cites W4283765858 @default.
- W4387608977 cites W4301258660 @default.
- W4387608977 cites W4301454587 @default.
- W4387608977 cites W4315703503 @default.
- W4387608977 cites W4383875507 @default.
- W4387608977 cites W4384009079 @default.
- W4387608977 doi "https://doi.org/10.1007/s11222-023-10307-2" @default.
- W4387608977 hasPublicationYear "2023" @default.
- W4387608977 type Work @default.
- W4387608977 citedByCount "0" @default.
- W4387608977 crossrefType "journal-article" @default.
- W4387608977 hasAuthorship W4387608977A5012373865 @default.
- W4387608977 hasAuthorship W4387608977A5017531939 @default.
- W4387608977 hasAuthorship W4387608977A5032805069 @default.
- W4387608977 hasAuthorship W4387608977A5084177125 @default.