Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387609148> ?p ?o ?g. }
Showing items 1 to 76 of
76
with 100 items per page.
- W4387609148 endingPage "15" @default.
- W4387609148 startingPage "1" @default.
- W4387609148 abstract "Refinery production scheduling is a mixed-integer programming problem, which exists the issue of combinational explosion. Thus, solving a large-scale refinery production scheduling problem is time-consuming. This article proposes an approximate solution framework based on reinforcement learning (RL) for large-scale long-time refinery production scheduling problems to rapidly obtain a satisfactory solution. In the proposed algorithm, the Proximal Policy Optimization algorithm is used to process the continuous action. To address the cold start issue of RL in refinery scheduling problem, we present an initialization method for the actor of agent, which utilizes the operation knowledge of tractable small-scale problems to initialize the actor network, and the agent is trained in the environment of large-scale problems. Hence, the convergence of the RL algorithm is greatly accelerated. In addition, the product flowrate concept is used to express the state, making the scheduling agent scalable in terms of scheduling horizon. Experimental studies show, to large-scale refinery scheduling problems, the proposed algorithm can obtain better solutions than that of the CPLEX solver and the existing evolutionary algorithm in a much shorter solving time of the two methods. <italic xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>Note to Practitioners</i> —Scheduling is a link between planning and execution, and it can bring huge economic benefits to the refinery enterprises. With the enlargement of scheduling horizon, the scale of scheduling problems increases dramatically. How to deal with this large-scale scheduling problem caused by a long scheduling horizon is a significant problem. In this paper, the proposed method learns a decision-maker by reinforcement learning and applies to large-scale problems to obtain a good solution quickly. The proposed method is essentially a heuristic algorithm, and it is easy to implement in practice. At present, more and more things will be integrated into one model, leading to the traditional solver cannot meet the application needs. The fast solution method is necessary to be used to solve this problem in the new era." @default.
- W4387609148 created "2023-10-14" @default.
- W4387609148 creator A5022740106 @default.
- W4387609148 creator A5042952240 @default.
- W4387609148 creator A5055545427 @default.
- W4387609148 date "2023-01-01" @default.
- W4387609148 modified "2023-10-14" @default.
- W4387609148 title "A Reinforcement Learning Based Large-Scale Refinery Production Scheduling Algorithm" @default.
- W4387609148 doi "https://doi.org/10.1109/tase.2023.3321612" @default.
- W4387609148 hasPublicationYear "2023" @default.
- W4387609148 type Work @default.
- W4387609148 citedByCount "0" @default.
- W4387609148 crossrefType "journal-article" @default.
- W4387609148 hasAuthorship W4387609148A5022740106 @default.
- W4387609148 hasAuthorship W4387609148A5042952240 @default.
- W4387609148 hasAuthorship W4387609148A5055545427 @default.
- W4387609148 hasConcept C105168734 @default.
- W4387609148 hasConcept C107568181 @default.
- W4387609148 hasConcept C111919701 @default.
- W4387609148 hasConcept C11413529 @default.
- W4387609148 hasConcept C119948110 @default.
- W4387609148 hasConcept C120314980 @default.
- W4387609148 hasConcept C126255220 @default.
- W4387609148 hasConcept C127413603 @default.
- W4387609148 hasConcept C127456818 @default.
- W4387609148 hasConcept C154945302 @default.
- W4387609148 hasConcept C158336966 @default.
- W4387609148 hasConcept C159022435 @default.
- W4387609148 hasConcept C206729178 @default.
- W4387609148 hasConcept C31689143 @default.
- W4387609148 hasConcept C33923547 @default.
- W4387609148 hasConcept C41008148 @default.
- W4387609148 hasConcept C548081761 @default.
- W4387609148 hasConcept C55416958 @default.
- W4387609148 hasConcept C68387754 @default.
- W4387609148 hasConcept C97541855 @default.
- W4387609148 hasConceptScore W4387609148C105168734 @default.
- W4387609148 hasConceptScore W4387609148C107568181 @default.
- W4387609148 hasConceptScore W4387609148C111919701 @default.
- W4387609148 hasConceptScore W4387609148C11413529 @default.
- W4387609148 hasConceptScore W4387609148C119948110 @default.
- W4387609148 hasConceptScore W4387609148C120314980 @default.
- W4387609148 hasConceptScore W4387609148C126255220 @default.
- W4387609148 hasConceptScore W4387609148C127413603 @default.
- W4387609148 hasConceptScore W4387609148C127456818 @default.
- W4387609148 hasConceptScore W4387609148C154945302 @default.
- W4387609148 hasConceptScore W4387609148C158336966 @default.
- W4387609148 hasConceptScore W4387609148C159022435 @default.
- W4387609148 hasConceptScore W4387609148C206729178 @default.
- W4387609148 hasConceptScore W4387609148C31689143 @default.
- W4387609148 hasConceptScore W4387609148C33923547 @default.
- W4387609148 hasConceptScore W4387609148C41008148 @default.
- W4387609148 hasConceptScore W4387609148C548081761 @default.
- W4387609148 hasConceptScore W4387609148C55416958 @default.
- W4387609148 hasConceptScore W4387609148C68387754 @default.
- W4387609148 hasConceptScore W4387609148C97541855 @default.
- W4387609148 hasFunder F4320321001 @default.
- W4387609148 hasFunder F4320321543 @default.
- W4387609148 hasLocation W43876091481 @default.
- W4387609148 hasOpenAccess W4387609148 @default.
- W4387609148 hasPrimaryLocation W43876091481 @default.
- W4387609148 hasRelatedWork W131757205 @default.
- W4387609148 hasRelatedWork W2057737420 @default.
- W4387609148 hasRelatedWork W2155809154 @default.
- W4387609148 hasRelatedWork W2365679959 @default.
- W4387609148 hasRelatedWork W2596081411 @default.
- W4387609148 hasRelatedWork W2741059494 @default.
- W4387609148 hasRelatedWork W2838819579 @default.
- W4387609148 hasRelatedWork W2949165180 @default.
- W4387609148 hasRelatedWork W32630872 @default.
- W4387609148 hasRelatedWork W4382280829 @default.
- W4387609148 isParatext "false" @default.
- W4387609148 isRetracted "false" @default.
- W4387609148 workType "article" @default.