Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387609197> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W4387609197 endingPage "12" @default.
- W4387609197 startingPage "1" @default.
- W4387609197 abstract "Intelligent vehicles demand reliable, continuous, and accurate positioning capability. Light Detection and Ranging (LiDAR)-inertial odometry (LIO) provides precise continuous relative pose estimation but suffers from drift over large-scale operations. Global navigation satellite system (GNSS) offers drift-free absolute positioning capability but the accuracy is strongly affected by non-line-of-sight (NLOS) receptions and multipath effects arising from the reflections of the surrounding environments. The tightly-coupled integration of the GNSS and LIO is highly complementary. However, how to fully utilize the complementariness of LiDAR measurements and the GNSS model is still an open question. More importantly, an open-sourced implementation of their integration is highly expected. To fill these gaps, this paper proposes the GLIO, a GNSS/LiDAR/IMU integrated estimator that tightly fuses GNSS pseudorange, Doppler, LiDAR, and IMU measurements using factor graph optimization (FGO). In particular, the corrections from the reference station are adopted to remove the systematic errors involved in the GNSS pseudorange measurements. To fully exploit the complementariness of the LiDAR and GNSS measurements, two stages of the optimization scheme are utilized to achieve global consistent and continuous pose estimation. In the first stage of optimization, the sliding-window-based FGO is employed to integrate the GNSS-related factors, IMU pre-integration factor, and scan-to-map-based LiDAR factor for efficient odometry estimation. In the second stage of optimization, the LiDAR factor is employed as a scan-to-multiscan scheme to maintain global consistency and improve the robustness of the system to the GNSS outlier by large-scale batch optimization. We evaluate the proposed method and verify its effectiveness through the challenge dataset UrbanNav involving highly urbanized areas. The proposed system achieves more than 70% improvement in positioning accuracy compared with the traditional GNSS positioning method and LIO standalone system. To benefit the community, the implementation is open-sourced at <uri xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>https://github.com/XikunLiu-huskit/GLIO</uri> ." @default.
- W4387609197 created "2023-10-14" @default.
- W4387609197 creator A5020673866 @default.
- W4387609197 creator A5044957601 @default.
- W4387609197 creator A5045346492 @default.
- W4387609197 date "2023-01-01" @default.
- W4387609197 modified "2023-10-14" @default.
- W4387609197 title "GLIO: Tightly-Coupled GNSS/LiDAR/IMU Integration for Continuous and Drift-free State Estimation of Intelligent Vehicles in Urban Areas" @default.
- W4387609197 doi "https://doi.org/10.1109/tiv.2023.3323648" @default.
- W4387609197 hasPublicationYear "2023" @default.
- W4387609197 type Work @default.
- W4387609197 citedByCount "0" @default.
- W4387609197 crossrefType "journal-article" @default.
- W4387609197 hasAuthorship W4387609197A5020673866 @default.
- W4387609197 hasAuthorship W4387609197A5044957601 @default.
- W4387609197 hasAuthorship W4387609197A5045346492 @default.
- W4387609197 hasConcept C11413529 @default.
- W4387609197 hasConcept C14279187 @default.
- W4387609197 hasConcept C154945302 @default.
- W4387609197 hasConcept C159246509 @default.
- W4387609197 hasConcept C174201072 @default.
- W4387609197 hasConcept C19966478 @default.
- W4387609197 hasConcept C205649164 @default.
- W4387609197 hasConcept C41008148 @default.
- W4387609197 hasConcept C49441653 @default.
- W4387609197 hasConcept C51399673 @default.
- W4387609197 hasConcept C57273362 @default.
- W4387609197 hasConcept C60229501 @default.
- W4387609197 hasConcept C62649853 @default.
- W4387609197 hasConcept C76155785 @default.
- W4387609197 hasConcept C79061980 @default.
- W4387609197 hasConcept C79403827 @default.
- W4387609197 hasConcept C90509273 @default.
- W4387609197 hasConceptScore W4387609197C11413529 @default.
- W4387609197 hasConceptScore W4387609197C14279187 @default.
- W4387609197 hasConceptScore W4387609197C154945302 @default.
- W4387609197 hasConceptScore W4387609197C159246509 @default.
- W4387609197 hasConceptScore W4387609197C174201072 @default.
- W4387609197 hasConceptScore W4387609197C19966478 @default.
- W4387609197 hasConceptScore W4387609197C205649164 @default.
- W4387609197 hasConceptScore W4387609197C41008148 @default.
- W4387609197 hasConceptScore W4387609197C49441653 @default.
- W4387609197 hasConceptScore W4387609197C51399673 @default.
- W4387609197 hasConceptScore W4387609197C57273362 @default.
- W4387609197 hasConceptScore W4387609197C60229501 @default.
- W4387609197 hasConceptScore W4387609197C62649853 @default.
- W4387609197 hasConceptScore W4387609197C76155785 @default.
- W4387609197 hasConceptScore W4387609197C79061980 @default.
- W4387609197 hasConceptScore W4387609197C79403827 @default.
- W4387609197 hasConceptScore W4387609197C90509273 @default.
- W4387609197 hasLocation W43876091971 @default.
- W4387609197 hasOpenAccess W4387609197 @default.
- W4387609197 hasPrimaryLocation W43876091971 @default.
- W4387609197 hasRelatedWork W1979458460 @default.
- W4387609197 hasRelatedWork W2774624508 @default.
- W4387609197 hasRelatedWork W3130617165 @default.
- W4387609197 hasRelatedWork W3198415914 @default.
- W4387609197 hasRelatedWork W3204981892 @default.
- W4387609197 hasRelatedWork W3206500252 @default.
- W4387609197 hasRelatedWork W3216386610 @default.
- W4387609197 hasRelatedWork W4239395258 @default.
- W4387609197 hasRelatedWork W4380563814 @default.
- W4387609197 hasRelatedWork W52232948 @default.
- W4387609197 isParatext "false" @default.
- W4387609197 isRetracted "false" @default.
- W4387609197 workType "article" @default.