Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387609764> ?p ?o ?g. }
- W4387609764 abstract "Background Early detection and localization of myocardial infarction (MI) can reduce the severity of cardiac damage through timely treatment interventions. In recent years, deep learning techniques have shown promise for detecting MI in echocardiographic images. Existing attempts typically formulate this task as classification and rely on a single segmentation model to estimate myocardial segment displacements. However, there has been no examination of how segmentation accuracy affects MI classification performance or the potential benefits of using ensemble learning approaches. Our study investigates this relationship and introduces a robust method that combines features from multiple segmentation models to improve MI classification performance by leveraging ensemble learning. Materials and Methods Our method combines myocardial segment displacement features from multiple segmentation models, which are then input into a typical classifier to estimate the risk of MI. We validated the proposed approach on two datasets: the public HMC-QU dataset (109 echocardiograms) for training and validation, and an E-Hospital dataset (60 echocardiograms) from a local clinical site in Vietnam for independent testing. Model performance was evaluated based on accuracy, sensitivity, and specificity. Results The proposed approach demonstrated excellent performance in detecting MI. It achieved an F1 score of 0.942, corresponding to an accuracy of 91.4%, a sensitivity of 94.1%, and a specificity of 88.3%. The results showed that the proposed approach outperformed the state-of-the-art feature-based method, which had a precision of 85.2%, a specificity of 70.1%, a sensitivity of 85.9%, an accuracy of 85.5%, and an accuracy of 80.2% on the HMC-QU dataset. On the external validation set, the proposed model still performed well, with an F1 score of 0.8, an accuracy of 76.7%, a sensitivity of 77.8%, and a specificity of 75.0%. Conclusions Our study demonstrated the ability to accurately predict MI in echocardiograms by combining information from several segmentation models. Further research is necessary to determine its potential use in clinical settings as a tool to assist cardiologists and technicians with objective assessments and reduce dependence on operator subjectivity. Our research codes are available on GitHub at https://github.com/vinuni-vishc/mi-detection-echo ." @default.
- W4387609764 created "2023-10-14" @default.
- W4387609764 creator A5000550533 @default.
- W4387609764 creator A5015295543 @default.
- W4387609764 creator A5021487139 @default.
- W4387609764 creator A5026371271 @default.
- W4387609764 creator A5030295241 @default.
- W4387609764 creator A5038713395 @default.
- W4387609764 creator A5040241722 @default.
- W4387609764 creator A5064200696 @default.
- W4387609764 creator A5064952452 @default.
- W4387609764 creator A5065112274 @default.
- W4387609764 creator A5078144870 @default.
- W4387609764 creator A5083924160 @default.
- W4387609764 creator A5091627176 @default.
- W4387609764 date "2023-10-13" @default.
- W4387609764 modified "2023-10-14" @default.
- W4387609764 title "Ensemble learning of myocardial displacements for myocardial infarction detection in echocardiography" @default.
- W4387609764 cites W1967349311 @default.
- W4387609764 cites W2015135858 @default.
- W4387609764 cites W2018244035 @default.
- W4387609764 cites W2023606650 @default.
- W4387609764 cites W2037789405 @default.
- W4387609764 cites W2071315978 @default.
- W4387609764 cites W2076063813 @default.
- W4387609764 cites W2093734480 @default.
- W4387609764 cites W2104095591 @default.
- W4387609764 cites W2119752929 @default.
- W4387609764 cites W2119791479 @default.
- W4387609764 cites W2122111042 @default.
- W4387609764 cites W2126830306 @default.
- W4387609764 cites W2127512198 @default.
- W4387609764 cites W2155136656 @default.
- W4387609764 cites W2549857822 @default.
- W4387609764 cites W2561645127 @default.
- W4387609764 cites W2580792129 @default.
- W4387609764 cites W2896287590 @default.
- W4387609764 cites W2903950532 @default.
- W4387609764 cites W2964350391 @default.
- W4387609764 cites W2996290406 @default.
- W4387609764 cites W3006379117 @default.
- W4387609764 cites W3091871822 @default.
- W4387609764 cites W3101612813 @default.
- W4387609764 cites W3102373279 @default.
- W4387609764 cites W3103215654 @default.
- W4387609764 cites W3152358307 @default.
- W4387609764 cites W3166918621 @default.
- W4387609764 cites W3194730353 @default.
- W4387609764 cites W3198728103 @default.
- W4387609764 cites W4205653014 @default.
- W4387609764 cites W4212883601 @default.
- W4387609764 cites W4238277289 @default.
- W4387609764 cites W4239510810 @default.
- W4387609764 cites W4249896096 @default.
- W4387609764 cites W4292560125 @default.
- W4387609764 doi "https://doi.org/10.3389/fcvm.2023.1185172" @default.
- W4387609764 hasPublicationYear "2023" @default.
- W4387609764 type Work @default.
- W4387609764 citedByCount "0" @default.
- W4387609764 crossrefType "journal-article" @default.
- W4387609764 hasAuthorship W4387609764A5000550533 @default.
- W4387609764 hasAuthorship W4387609764A5015295543 @default.
- W4387609764 hasAuthorship W4387609764A5021487139 @default.
- W4387609764 hasAuthorship W4387609764A5026371271 @default.
- W4387609764 hasAuthorship W4387609764A5030295241 @default.
- W4387609764 hasAuthorship W4387609764A5038713395 @default.
- W4387609764 hasAuthorship W4387609764A5040241722 @default.
- W4387609764 hasAuthorship W4387609764A5064200696 @default.
- W4387609764 hasAuthorship W4387609764A5064952452 @default.
- W4387609764 hasAuthorship W4387609764A5065112274 @default.
- W4387609764 hasAuthorship W4387609764A5078144870 @default.
- W4387609764 hasAuthorship W4387609764A5083924160 @default.
- W4387609764 hasAuthorship W4387609764A5091627176 @default.
- W4387609764 hasBestOaLocation W43876097641 @default.
- W4387609764 hasConcept C119857082 @default.
- W4387609764 hasConcept C153180895 @default.
- W4387609764 hasConcept C154945302 @default.
- W4387609764 hasConcept C164705383 @default.
- W4387609764 hasConcept C41008148 @default.
- W4387609764 hasConcept C45942800 @default.
- W4387609764 hasConcept C500558357 @default.
- W4387609764 hasConcept C71924100 @default.
- W4387609764 hasConcept C89600930 @default.
- W4387609764 hasConcept C95623464 @default.
- W4387609764 hasConceptScore W4387609764C119857082 @default.
- W4387609764 hasConceptScore W4387609764C153180895 @default.
- W4387609764 hasConceptScore W4387609764C154945302 @default.
- W4387609764 hasConceptScore W4387609764C164705383 @default.
- W4387609764 hasConceptScore W4387609764C41008148 @default.
- W4387609764 hasConceptScore W4387609764C45942800 @default.
- W4387609764 hasConceptScore W4387609764C500558357 @default.
- W4387609764 hasConceptScore W4387609764C71924100 @default.
- W4387609764 hasConceptScore W4387609764C89600930 @default.
- W4387609764 hasConceptScore W4387609764C95623464 @default.
- W4387609764 hasLocation W43876097641 @default.
- W4387609764 hasOpenAccess W4387609764 @default.
- W4387609764 hasPrimaryLocation W43876097641 @default.
- W4387609764 hasRelatedWork W1191482210 @default.
- W4387609764 hasRelatedWork W2806625726 @default.
- W4387609764 hasRelatedWork W2900445707 @default.