Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387609903> ?p ?o ?g. }
- W4387609903 abstract "Introduction In the face of increasingly severe global climate change and environmental challenges, reducing carbon emissions has become a key global priority. Deep learning, as a powerful artificial intelligence technology, has demonstrated significant capabilities in time series analysis and pattern recognition, opening up new avenues for carbon emission prediction and policy development. Methods In this study, we carefully collected and pre-processed four datasets to ensure the reliability and consistency of the data. Our proposed TCN-LSTM combination architecture effectively leverages the parallel computing capabilities of TCN and the memory capacity of LSTM, more efficiently capturing long-term dependencies in time series data. Furthermore, the introduction of an attention mechanism allows us to weigh important factors in historical data, thereby improving the accuracy and robustness of predictions. Results Our research findings provide novel insights and methods for advancing carbon emission prediction. Additionally, our discoveries offer valuable references for decision-makers and government agencies in formulating scientifically effective carbon reduction policies. As the urgency of addressing climate change continues to grow, the progress made in this paper can contribute to a more sustainable and environmentally conscious future. Discussion In this paper, we emphasize the potential of deep learning techniques in carbon emission prediction and demonstrate the effectiveness of the TCN-LSTM combination architecture. The significant contribution of this research lies in providing a new approach to address the carbon emission prediction problem in time series data. Moreover, our study underscores the importance of data reliability and consistency for the successful application of models. We encourage further research and application of this method to facilitate the achievement of global carbon reduction goals." @default.
- W4387609903 created "2023-10-14" @default.
- W4387609903 creator A5053157318 @default.
- W4387609903 creator A5066371876 @default.
- W4387609903 date "2023-10-13" @default.
- W4387609903 modified "2023-10-14" @default.
- W4387609903 title "Research on carbon emission prediction and economic policy based on TCN-LSTM combined with attention mechanism" @default.
- W4387609903 cites W2037230110 @default.
- W4387609903 cites W2541631431 @default.
- W4387609903 cites W2553637734 @default.
- W4387609903 cites W2741362534 @default.
- W4387609903 cites W2896532220 @default.
- W4387609903 cites W2968181685 @default.
- W4387609903 cites W2997833886 @default.
- W4387609903 cites W3006354289 @default.
- W4387609903 cites W3007066384 @default.
- W4387609903 cites W3014616211 @default.
- W4387609903 cites W3019433526 @default.
- W4387609903 cites W3047443805 @default.
- W4387609903 cites W3048631361 @default.
- W4387609903 cites W3092568511 @default.
- W4387609903 cites W3095364169 @default.
- W4387609903 cites W3101012758 @default.
- W4387609903 cites W3130267019 @default.
- W4387609903 cites W3131686906 @default.
- W4387609903 cites W3159031898 @default.
- W4387609903 cites W3168072812 @default.
- W4387609903 cites W3204384916 @default.
- W4387609903 cites W3214821343 @default.
- W4387609903 cites W4200568251 @default.
- W4387609903 cites W4212912645 @default.
- W4387609903 cites W4220742031 @default.
- W4387609903 cites W4224947654 @default.
- W4387609903 cites W4225253992 @default.
- W4387609903 cites W4226058443 @default.
- W4387609903 cites W4303520659 @default.
- W4387609903 cites W4307678382 @default.
- W4387609903 cites W4311087918 @default.
- W4387609903 cites W4320472162 @default.
- W4387609903 cites W4327966583 @default.
- W4387609903 cites W4384895798 @default.
- W4387609903 doi "https://doi.org/10.3389/fevo.2023.1270248" @default.
- W4387609903 hasPublicationYear "2023" @default.
- W4387609903 type Work @default.
- W4387609903 citedByCount "0" @default.
- W4387609903 crossrefType "journal-article" @default.
- W4387609903 hasAuthorship W4387609903A5053157318 @default.
- W4387609903 hasAuthorship W4387609903A5066371876 @default.
- W4387609903 hasBestOaLocation W43876099031 @default.
- W4387609903 hasConcept C104317684 @default.
- W4387609903 hasConcept C108583219 @default.
- W4387609903 hasConcept C115343472 @default.
- W4387609903 hasConcept C119857082 @default.
- W4387609903 hasConcept C121332964 @default.
- W4387609903 hasConcept C123657996 @default.
- W4387609903 hasConcept C132651083 @default.
- W4387609903 hasConcept C138885662 @default.
- W4387609903 hasConcept C142362112 @default.
- W4387609903 hasConcept C153349607 @default.
- W4387609903 hasConcept C154945302 @default.
- W4387609903 hasConcept C163258240 @default.
- W4387609903 hasConcept C185592680 @default.
- W4387609903 hasConcept C18903297 @default.
- W4387609903 hasConcept C2522767166 @default.
- W4387609903 hasConcept C2776436953 @default.
- W4387609903 hasConcept C2778137410 @default.
- W4387609903 hasConcept C41008148 @default.
- W4387609903 hasConcept C41895202 @default.
- W4387609903 hasConcept C43214815 @default.
- W4387609903 hasConcept C47737302 @default.
- W4387609903 hasConcept C55493867 @default.
- W4387609903 hasConcept C62520636 @default.
- W4387609903 hasConcept C63479239 @default.
- W4387609903 hasConcept C86803240 @default.
- W4387609903 hasConceptScore W4387609903C104317684 @default.
- W4387609903 hasConceptScore W4387609903C108583219 @default.
- W4387609903 hasConceptScore W4387609903C115343472 @default.
- W4387609903 hasConceptScore W4387609903C119857082 @default.
- W4387609903 hasConceptScore W4387609903C121332964 @default.
- W4387609903 hasConceptScore W4387609903C123657996 @default.
- W4387609903 hasConceptScore W4387609903C132651083 @default.
- W4387609903 hasConceptScore W4387609903C138885662 @default.
- W4387609903 hasConceptScore W4387609903C142362112 @default.
- W4387609903 hasConceptScore W4387609903C153349607 @default.
- W4387609903 hasConceptScore W4387609903C154945302 @default.
- W4387609903 hasConceptScore W4387609903C163258240 @default.
- W4387609903 hasConceptScore W4387609903C185592680 @default.
- W4387609903 hasConceptScore W4387609903C18903297 @default.
- W4387609903 hasConceptScore W4387609903C2522767166 @default.
- W4387609903 hasConceptScore W4387609903C2776436953 @default.
- W4387609903 hasConceptScore W4387609903C2778137410 @default.
- W4387609903 hasConceptScore W4387609903C41008148 @default.
- W4387609903 hasConceptScore W4387609903C41895202 @default.
- W4387609903 hasConceptScore W4387609903C43214815 @default.
- W4387609903 hasConceptScore W4387609903C47737302 @default.
- W4387609903 hasConceptScore W4387609903C55493867 @default.
- W4387609903 hasConceptScore W4387609903C62520636 @default.
- W4387609903 hasConceptScore W4387609903C63479239 @default.
- W4387609903 hasConceptScore W4387609903C86803240 @default.
- W4387609903 hasLocation W43876099031 @default.