Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387609969> ?p ?o ?g. }
- W4387609969 abstract "Objective Artificial intelligence (AI), with its potential to diagnose skin cancer, has the potential to revolutionize future medical and dermatological practices. However, the current knowledge regarding the utilization of AI in skin cancer diagnosis remains somewhat limited, necessitating further research. This study employs visual bibliometric analysis to consolidate and present insights into the evolution and deployment of AI in the context of skin cancer. Through this analysis, we aim to shed light on the research developments, focal areas of interest, and emerging trends within AI and its application to skin cancer diagnosis. Methods On July 14, 2023, articles and reviews about the application of AI in skin cancer, spanning the years from 1900 to 2023, were selected from the Web of Science Core Collection. Co-authorship, co-citation, and co-occurrence analyses of countries, institutions, authors, references, and keywords within this field were conducted using a combination of tools, including CiteSpace V (version 6.2. R3), VOSviewer (version 1.6.18), SCImago, Microsoft Excel 2019, and R 4.2.3. Results A total of 512 papers matching the search terms and inclusion/exclusion criteria were published between 1991 and 2023. The United States leads in publications with 149, followed by India with 61. Germany holds eight positions among the top 10 institutions, while the United States has two. The most prevalent journals cited were Cancer , the European Journal of Cancer , and Sensors . The most frequently cited keywords include “skin cancer”, “classification”, “artificial intelligence”, and “deep learning”. Conclusions Research into the application of AI in skin cancer is rapidly expanding, and an increasing number of scholars are dedicating their efforts to this field. With the advancement of AI technology, new opportunities have arisen to enhance the accuracy of skin imaging diagnosis, treatment based on big data, and prognosis prediction. However, at present, the majority of AI research in the field of skin cancer diagnosis is still in the feasibility study stage. It has not yet made significant progress toward practical implementation in clinical settings. To make substantial strides in this field, there is a need to enhance collaboration between countries and institutions. Despite the potential benefits of AI in skin cancer research, numerous challenges remain to be addressed, including developing robust algorithms, resolving data quality issues, and enhancing results interpretability. Consequently, sustained efforts are essential to surmount these obstacles and facilitate the practical application of AI in skin cancer research." @default.
- W4387609969 created "2023-10-14" @default.
- W4387609969 creator A5006239432 @default.
- W4387609969 creator A5073501391 @default.
- W4387609969 creator A5088025881 @default.
- W4387609969 date "2023-10-13" @default.
- W4387609969 modified "2023-10-14" @default.
- W4387609969 title "Mapping the landscape of artificial intelligence in skin cancer research: a bibliometric analysis" @default.
- W4387609969 cites W1540044642 @default.
- W4387609969 cites W2025975895 @default.
- W4387609969 cites W2051704735 @default.
- W4387609969 cites W2082781038 @default.
- W4387609969 cites W2083451381 @default.
- W4387609969 cites W2117539524 @default.
- W4387609969 cites W2135216654 @default.
- W4387609969 cites W2164613605 @default.
- W4387609969 cites W2356242503 @default.
- W4387609969 cites W2537189671 @default.
- W4387609969 cites W2546191734 @default.
- W4387609969 cites W2576404523 @default.
- W4387609969 cites W2581082771 @default.
- W4387609969 cites W2616823333 @default.
- W4387609969 cites W2664267452 @default.
- W4387609969 cites W2757940437 @default.
- W4387609969 cites W2777060354 @default.
- W4387609969 cites W2891595725 @default.
- W4387609969 cites W2899455839 @default.
- W4387609969 cites W2908201961 @default.
- W4387609969 cites W2919115771 @default.
- W4387609969 cites W2948657385 @default.
- W4387609969 cites W2949358505 @default.
- W4387609969 cites W2949497754 @default.
- W4387609969 cites W2967473922 @default.
- W4387609969 cites W2968600287 @default.
- W4387609969 cites W2972588473 @default.
- W4387609969 cites W3001878481 @default.
- W4387609969 cites W3002743231 @default.
- W4387609969 cites W3012937626 @default.
- W4387609969 cites W3081987128 @default.
- W4387609969 cites W3085719542 @default.
- W4387609969 cites W3115591251 @default.
- W4387609969 cites W3128646645 @default.
- W4387609969 cites W3137875885 @default.
- W4387609969 cites W3162521732 @default.
- W4387609969 cites W3197594600 @default.
- W4387609969 cites W4206579594 @default.
- W4387609969 cites W4211223138 @default.
- W4387609969 cites W4214685660 @default.
- W4387609969 cites W4225424713 @default.
- W4387609969 cites W4308861032 @default.
- W4387609969 cites W4320492826 @default.
- W4387609969 cites W4323035286 @default.
- W4387609969 cites W4376275035 @default.
- W4387609969 cites W4378649258 @default.
- W4387609969 cites W4386029088 @default.
- W4387609969 cites W4386030697 @default.
- W4387609969 cites W4386118601 @default.
- W4387609969 doi "https://doi.org/10.3389/fonc.2023.1222426" @default.
- W4387609969 hasPublicationYear "2023" @default.
- W4387609969 type Work @default.
- W4387609969 citedByCount "0" @default.
- W4387609969 crossrefType "journal-article" @default.
- W4387609969 hasAuthorship W4387609969A5006239432 @default.
- W4387609969 hasAuthorship W4387609969A5073501391 @default.
- W4387609969 hasAuthorship W4387609969A5088025881 @default.
- W4387609969 hasBestOaLocation W43876099691 @default.
- W4387609969 hasConcept C121608353 @default.
- W4387609969 hasConcept C126322002 @default.
- W4387609969 hasConcept C142724271 @default.
- W4387609969 hasConcept C154945302 @default.
- W4387609969 hasConcept C161191863 @default.
- W4387609969 hasConcept C166957645 @default.
- W4387609969 hasConcept C205649164 @default.
- W4387609969 hasConcept C2522767166 @default.
- W4387609969 hasConcept C2777789703 @default.
- W4387609969 hasConcept C2778805511 @default.
- W4387609969 hasConcept C2779343474 @default.
- W4387609969 hasConcept C3020774429 @default.
- W4387609969 hasConcept C41008148 @default.
- W4387609969 hasConcept C71924100 @default.
- W4387609969 hasConcept C95190672 @default.
- W4387609969 hasConceptScore W4387609969C121608353 @default.
- W4387609969 hasConceptScore W4387609969C126322002 @default.
- W4387609969 hasConceptScore W4387609969C142724271 @default.
- W4387609969 hasConceptScore W4387609969C154945302 @default.
- W4387609969 hasConceptScore W4387609969C161191863 @default.
- W4387609969 hasConceptScore W4387609969C166957645 @default.
- W4387609969 hasConceptScore W4387609969C205649164 @default.
- W4387609969 hasConceptScore W4387609969C2522767166 @default.
- W4387609969 hasConceptScore W4387609969C2777789703 @default.
- W4387609969 hasConceptScore W4387609969C2778805511 @default.
- W4387609969 hasConceptScore W4387609969C2779343474 @default.
- W4387609969 hasConceptScore W4387609969C3020774429 @default.
- W4387609969 hasConceptScore W4387609969C41008148 @default.
- W4387609969 hasConceptScore W4387609969C71924100 @default.
- W4387609969 hasConceptScore W4387609969C95190672 @default.
- W4387609969 hasFunder F4320321001 @default.
- W4387609969 hasLocation W43876099691 @default.
- W4387609969 hasOpenAccess W4387609969 @default.
- W4387609969 hasPrimaryLocation W43876099691 @default.