Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387611160> ?p ?o ?g. }
- W4387611160 endingPage "14" @default.
- W4387611160 startingPage "1" @default.
- W4387611160 abstract "AbstractA reliability demonstration test (RDT) plays a critical role in safeguarding product reliability and making sure it meets the target requirement. When planning an RDT, the test planning parameters are determined before executing the RDT. There is uncertainty associated with the test result and whether the product will be acceptable and released into the market with additional costs resulting from the warranty service or whether a reliability growth process is needed to further improve the product’s reliability. Potentially, such a process could be repeated multiple times depending on how quickly the reliability growth process can improve product reliability. Existing RDT designs primarily consider the cost of RDT itself or over a single demonstration stage before the next possible RDT, and hence fail to fully address the uncertainty of all possible future RDTs and various pathways a product may go through in a multi-stage demonstration process. By focusing on binomial RDT (BRDT) plans based on failure count data, this paper proposes an optimal Bayesian BRDT design framework by explicitly quantifying the multi-stage acceptance uncertainties resulting from current and subsequent BRDTs. It allows the BRDT planning decision to be determined more holistically by anticipating the costs of warranty service and reliability growth along different pathways over multiple stages. A recursive information propagation algorithm is proposed to incorporate the prior belief of product reliability and allow it to evolve and update over multiple stages of BRDT. A case study is presented to illustrate the proposed multi-stage Bayesian BRDT design framework and demonstrate its cost-efficiency compared to existing strategies. A comprehensive sensitivity analysis is also provided to demonstrate the impact of the relative size of different cost components, reliability growth rate, and prior setting on the performance of the proposed method.Keywords: bayesian reliabilityinformation propagationmulti-stage uncertaintiesoptimal test designreliability demonstration test Additional informationNotes on contributorsBingjie WangBingjie Wang is a PhD student in the Department of Industrial & Management Systems Engineering at the University of South Florida. She received her MS in Industrial Engineering from the State University of New York at Buffalo. Her research interests include decision science, data science and AI techniques.Lu LuLu Lu is an Associate Professor of Statistics in the Department of Mathematics and Statistics at the University of South Florida. She was a postdoctoral research associated in the Statistics Sciences Group at Los Alamos National Laboratory. She earned a doctorate in Statistics from Iowa State University. Her research interests include reliability analysis, design of experiments, response surface methodology, survey sampling, multiple objective/response optimization. She is a member of the American Statistical Association and the American Society for Quality.Suiyao ChenSuiyao Chen is Data Scientist at Amazon. He received his PhD in the Department of Industrial and Management Systems Engineering at the University of South Florida. He also received his MA degree in Statistics from Columbia University. His research interests include reliability demonstration tests, Bayesian data analytics and warranty analysis.Mingyang LiMingyang Li is an Associate Professor in the Department of Industrial & Management Systems Engineering at the University of South Florida. He received his PhD in Systems & Industrial Engineering and MS in Statistics from the University of Arizona. He also received a MS in Mechanical & Industrial Engineering from the University of Iowa. His research interests include reliability and quality assurance, Bayesian data analytics and system informatics. Dr. Li is a member of INFORMS, IISE and ASQ." @default.
- W4387611160 created "2023-10-14" @default.
- W4387611160 creator A5017267544 @default.
- W4387611160 creator A5021678671 @default.
- W4387611160 creator A5077972623 @default.
- W4387611160 creator A5078763867 @default.
- W4387611160 date "2023-10-13" @default.
- W4387611160 modified "2023-10-14" @default.
- W4387611160 title "Optimal test design for reliability demonstration under multi-stage acceptance uncertainties" @default.
- W4387611160 cites W1589669934 @default.
- W4387611160 cites W1967591154 @default.
- W4387611160 cites W2004988490 @default.
- W4387611160 cites W2025992563 @default.
- W4387611160 cites W2037355783 @default.
- W4387611160 cites W2040758228 @default.
- W4387611160 cites W2045854775 @default.
- W4387611160 cites W2071517573 @default.
- W4387611160 cites W2079829349 @default.
- W4387611160 cites W2087933340 @default.
- W4387611160 cites W2133048896 @default.
- W4387611160 cites W2150152536 @default.
- W4387611160 cites W2196564438 @default.
- W4387611160 cites W2542760697 @default.
- W4387611160 cites W2549666874 @default.
- W4387611160 cites W2604869428 @default.
- W4387611160 cites W2743404457 @default.
- W4387611160 cites W2900863581 @default.
- W4387611160 cites W2921286043 @default.
- W4387611160 cites W2939534738 @default.
- W4387611160 cites W3034033430 @default.
- W4387611160 cites W3138225738 @default.
- W4387611160 cites W4242360587 @default.
- W4387611160 doi "https://doi.org/10.1080/08982112.2023.2249188" @default.
- W4387611160 hasPublicationYear "2023" @default.
- W4387611160 type Work @default.
- W4387611160 citedByCount "0" @default.
- W4387611160 crossrefType "journal-article" @default.
- W4387611160 hasAuthorship W4387611160A5017267544 @default.
- W4387611160 hasAuthorship W4387611160A5021678671 @default.
- W4387611160 hasAuthorship W4387611160A5077972623 @default.
- W4387611160 hasAuthorship W4387611160A5078763867 @default.
- W4387611160 hasConcept C111919701 @default.
- W4387611160 hasConcept C121332964 @default.
- W4387611160 hasConcept C127413603 @default.
- W4387611160 hasConcept C136264566 @default.
- W4387611160 hasConcept C144133560 @default.
- W4387611160 hasConcept C151730666 @default.
- W4387611160 hasConcept C162324750 @default.
- W4387611160 hasConcept C162853370 @default.
- W4387611160 hasConcept C163258240 @default.
- W4387611160 hasConcept C17744445 @default.
- W4387611160 hasConcept C19351080 @default.
- W4387611160 hasConcept C199539241 @default.
- W4387611160 hasConcept C200601418 @default.
- W4387611160 hasConcept C2524010 @default.
- W4387611160 hasConcept C2777267654 @default.
- W4387611160 hasConcept C2779056723 @default.
- W4387611160 hasConcept C2780378061 @default.
- W4387611160 hasConcept C33923547 @default.
- W4387611160 hasConcept C41008148 @default.
- W4387611160 hasConcept C43214815 @default.
- W4387611160 hasConcept C62520636 @default.
- W4387611160 hasConcept C86803240 @default.
- W4387611160 hasConcept C90673727 @default.
- W4387611160 hasConcept C98045186 @default.
- W4387611160 hasConceptScore W4387611160C111919701 @default.
- W4387611160 hasConceptScore W4387611160C121332964 @default.
- W4387611160 hasConceptScore W4387611160C127413603 @default.
- W4387611160 hasConceptScore W4387611160C136264566 @default.
- W4387611160 hasConceptScore W4387611160C144133560 @default.
- W4387611160 hasConceptScore W4387611160C151730666 @default.
- W4387611160 hasConceptScore W4387611160C162324750 @default.
- W4387611160 hasConceptScore W4387611160C162853370 @default.
- W4387611160 hasConceptScore W4387611160C163258240 @default.
- W4387611160 hasConceptScore W4387611160C17744445 @default.
- W4387611160 hasConceptScore W4387611160C19351080 @default.
- W4387611160 hasConceptScore W4387611160C199539241 @default.
- W4387611160 hasConceptScore W4387611160C200601418 @default.
- W4387611160 hasConceptScore W4387611160C2524010 @default.
- W4387611160 hasConceptScore W4387611160C2777267654 @default.
- W4387611160 hasConceptScore W4387611160C2779056723 @default.
- W4387611160 hasConceptScore W4387611160C2780378061 @default.
- W4387611160 hasConceptScore W4387611160C33923547 @default.
- W4387611160 hasConceptScore W4387611160C41008148 @default.
- W4387611160 hasConceptScore W4387611160C43214815 @default.
- W4387611160 hasConceptScore W4387611160C62520636 @default.
- W4387611160 hasConceptScore W4387611160C86803240 @default.
- W4387611160 hasConceptScore W4387611160C90673727 @default.
- W4387611160 hasConceptScore W4387611160C98045186 @default.
- W4387611160 hasLocation W43876111601 @default.
- W4387611160 hasOpenAccess W4387611160 @default.
- W4387611160 hasPrimaryLocation W43876111601 @default.
- W4387611160 hasRelatedWork W2038323968 @default.
- W4387611160 hasRelatedWork W2126805135 @default.
- W4387611160 hasRelatedWork W2351687577 @default.
- W4387611160 hasRelatedWork W2373363799 @default.
- W4387611160 hasRelatedWork W2374836656 @default.
- W4387611160 hasRelatedWork W2382637078 @default.