Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387614334> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4387614334 endingPage "200286" @default.
- W4387614334 startingPage "200286" @default.
- W4387614334 abstract "Asset Liability Management (ALM) is an essential risk management technique in Quantitative Finance and Actuarial Science. It aims to maximise a risk-taker's ability to fulfil future liabilities. ALM is especially critical in environments of elevated interest rate changes, as has been experienced globally between 2021 and 2023. Traditional ALM implementation is still heavily dependent on the judgement of professionals such as Quants, Actuaries or Investment Managers. This over-reliance on human input critically limits ALM performance due to restricted automation, human irrationality and restricted scope for multi-objective optimisation. This paper addressed these limitations by applying Deep Reinforcement Learning (DRL), which optimises through trial, and error and continuous feedback from the environment. We defined the Reinforcement Learning (RL) components for the ALM application: the RL decision-making Agent, Environment, Actions, States and Reward Functions. The results demonstrated that DRL ALM can achieve duration-matching outcomes within 1% of the theoretical ALM at a 95% confidence level. Furthermore, compared to a benchmark weekly rebalancing traditional ALM regime, DRL ALM achieved superior outcomes of net portfolios which are, on average, 3 times less sensitive to interest rate changes. DRL also allows for increased automation, flexibility, and multi-objective optimisation in ALM, reducing the negative impact of human limitations and improving risk management outcomes. The findings and principles presented in this study apply to various institutional risk-takers, including insurers, banks, pension funds, and asset managers. Overall, DRL ALM provides a promising Artificial Intelligence (AI) avenue for improving risk management outcomes compared to the traditional approaches." @default.
- W4387614334 created "2023-10-14" @default.
- W4387614334 creator A5017900147 @default.
- W4387614334 creator A5029203783 @default.
- W4387614334 creator A5043716670 @default.
- W4387614334 date "2023-10-01" @default.
- W4387614334 modified "2023-10-15" @default.
- W4387614334 title "Application of deep reinforcement learning in asset liability management" @default.
- W4387614334 cites W2041600052 @default.
- W4387614334 cites W2050870263 @default.
- W4387614334 cites W2064675550 @default.
- W4387614334 cites W2080726585 @default.
- W4387614334 cites W2147704166 @default.
- W4387614334 cites W2885195348 @default.
- W4387614334 cites W2887104448 @default.
- W4387614334 cites W2896827527 @default.
- W4387614334 cites W2963900541 @default.
- W4387614334 cites W2972574632 @default.
- W4387614334 cites W2979650406 @default.
- W4387614334 cites W3100789280 @default.
- W4387614334 cites W3123704072 @default.
- W4387614334 cites W3136021864 @default.
- W4387614334 cites W3156194293 @default.
- W4387614334 cites W3164556110 @default.
- W4387614334 cites W4283080261 @default.
- W4387614334 cites W4353081299 @default.
- W4387614334 cites W4377206051 @default.
- W4387614334 doi "https://doi.org/10.1016/j.iswa.2023.200286" @default.
- W4387614334 hasPublicationYear "2023" @default.
- W4387614334 type Work @default.
- W4387614334 citedByCount "0" @default.
- W4387614334 crossrefType "journal-article" @default.
- W4387614334 hasAuthorship W4387614334A5017900147 @default.
- W4387614334 hasAuthorship W4387614334A5029203783 @default.
- W4387614334 hasAuthorship W4387614334A5043716670 @default.
- W4387614334 hasBestOaLocation W43876143341 @default.
- W4387614334 hasConcept C10138342 @default.
- W4387614334 hasConcept C112930515 @default.
- W4387614334 hasConcept C144133560 @default.
- W4387614334 hasConcept C154945302 @default.
- W4387614334 hasConcept C162118730 @default.
- W4387614334 hasConcept C2776517139 @default.
- W4387614334 hasConcept C2777834853 @default.
- W4387614334 hasConcept C32896092 @default.
- W4387614334 hasConcept C38652104 @default.
- W4387614334 hasConcept C41008148 @default.
- W4387614334 hasConcept C76178495 @default.
- W4387614334 hasConcept C97541855 @default.
- W4387614334 hasConceptScore W4387614334C10138342 @default.
- W4387614334 hasConceptScore W4387614334C112930515 @default.
- W4387614334 hasConceptScore W4387614334C144133560 @default.
- W4387614334 hasConceptScore W4387614334C154945302 @default.
- W4387614334 hasConceptScore W4387614334C162118730 @default.
- W4387614334 hasConceptScore W4387614334C2776517139 @default.
- W4387614334 hasConceptScore W4387614334C2777834853 @default.
- W4387614334 hasConceptScore W4387614334C32896092 @default.
- W4387614334 hasConceptScore W4387614334C38652104 @default.
- W4387614334 hasConceptScore W4387614334C41008148 @default.
- W4387614334 hasConceptScore W4387614334C76178495 @default.
- W4387614334 hasConceptScore W4387614334C97541855 @default.
- W4387614334 hasLocation W43876143341 @default.
- W4387614334 hasOpenAccess W4387614334 @default.
- W4387614334 hasPrimaryLocation W43876143341 @default.
- W4387614334 hasRelatedWork W2020397612 @default.
- W4387614334 hasRelatedWork W2033831753 @default.
- W4387614334 hasRelatedWork W2384042486 @default.
- W4387614334 hasRelatedWork W2811483426 @default.
- W4387614334 hasRelatedWork W2883251465 @default.
- W4387614334 hasRelatedWork W2898593553 @default.
- W4387614334 hasRelatedWork W3009911173 @default.
- W4387614334 hasRelatedWork W4280648890 @default.
- W4387614334 hasRelatedWork W4309642884 @default.
- W4387614334 hasRelatedWork W4387459160 @default.
- W4387614334 isParatext "false" @default.
- W4387614334 isRetracted "false" @default.
- W4387614334 workType "article" @default.