Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387615030> ?p ?o ?g. }
- W4387615030 abstract "Strain engineering provides a powerful means to tune the properties of two-dimensional materials. Accordingly, numerous studies have investigated the effect of bi- and uniaxial strain. Yet, the strain fields in many systems such as nanotubes and nanoscale wrinkles are intrinsically inhomogeneous and the consequences of this symmetry breaking are much less studied. Understanding how this affects the electronic properties is crucial, especially since wrinkling is a powerful method to apply strain to two-dimensional materials in a controlled manner. In this paper, we employ density functional theory to understand the correlation between the atomic and the electronic structure in nanoscale wrinkles and nanotubes of the prototypical transition metal dichalcogenide ${mathrm{WSe}}_{2}$. Our research shows that the symmetry breaking in these structures leads to strong Rashba-like splitting of the bands at the $mathrm{ensuremath{Gamma}}$ point and they thus may be utilized in future tunable spintronic devices. The inhomogeneous strain reduces the band gap and leads to a localization of the band edges in the highest-curvature region, thus funneling excitons there. Moreover, we show how wrinkles can be modeled as nanotubes with the same curvature and when this comparison breaks down and further inhomogeneities have to be taken into account." @default.
- W4387615030 created "2023-10-14" @default.
- W4387615030 creator A5027575900 @default.
- W4387615030 creator A5091082166 @default.
- W4387615030 date "2023-10-13" @default.
- W4387615030 modified "2023-10-15" @default.
- W4387615030 title "Funneling and spin-orbit coupling in transition metal dichalcogenide nanotubes and wrinkles" @default.
- W4387615030 cites W1499268405 @default.
- W4387615030 cites W1514271196 @default.
- W4387615030 cites W1540851797 @default.
- W4387615030 cites W1803879908 @default.
- W4387615030 cites W1981053966 @default.
- W4387615030 cites W1981368803 @default.
- W4387615030 cites W1984823253 @default.
- W4387615030 cites W1990382459 @default.
- W4387615030 cites W2021928592 @default.
- W4387615030 cites W2027279289 @default.
- W4387615030 cites W2058122340 @default.
- W4387615030 cites W2059885388 @default.
- W4387615030 cites W2064583131 @default.
- W4387615030 cites W2071955309 @default.
- W4387615030 cites W2074080896 @default.
- W4387615030 cites W2076625892 @default.
- W4387615030 cites W2078371152 @default.
- W4387615030 cites W2108086987 @default.
- W4387615030 cites W2120145199 @default.
- W4387615030 cites W2124335050 @default.
- W4387615030 cites W2148424525 @default.
- W4387615030 cites W2171294135 @default.
- W4387615030 cites W2185394467 @default.
- W4387615030 cites W222089771 @default.
- W4387615030 cites W2315555552 @default.
- W4387615030 cites W2417818976 @default.
- W4387615030 cites W2553169220 @default.
- W4387615030 cites W2580225177 @default.
- W4387615030 cites W2590162067 @default.
- W4387615030 cites W2602474203 @default.
- W4387615030 cites W2604498327 @default.
- W4387615030 cites W2788918217 @default.
- W4387615030 cites W2806275814 @default.
- W4387615030 cites W2901515854 @default.
- W4387615030 cites W2909378280 @default.
- W4387615030 cites W2921533368 @default.
- W4387615030 cites W2936635812 @default.
- W4387615030 cites W2943260258 @default.
- W4387615030 cites W2995672492 @default.
- W4387615030 cites W3024012319 @default.
- W4387615030 cites W3036670858 @default.
- W4387615030 cites W3039181808 @default.
- W4387615030 cites W3047732449 @default.
- W4387615030 cites W3088412964 @default.
- W4387615030 cites W3092091798 @default.
- W4387615030 cites W3097576723 @default.
- W4387615030 cites W3098124418 @default.
- W4387615030 cites W3098900879 @default.
- W4387615030 cites W3101095095 @default.
- W4387615030 cites W3103697959 @default.
- W4387615030 cites W3103754820 @default.
- W4387615030 cites W3104432086 @default.
- W4387615030 cites W3106615441 @default.
- W4387615030 cites W3110633133 @default.
- W4387615030 cites W3110775285 @default.
- W4387615030 cites W3120534124 @default.
- W4387615030 cites W3123308566 @default.
- W4387615030 cites W3125815693 @default.
- W4387615030 cites W3132340431 @default.
- W4387615030 cites W3133535587 @default.
- W4387615030 cites W3133683542 @default.
- W4387615030 cites W3134632815 @default.
- W4387615030 cites W3134753708 @default.
- W4387615030 cites W3135681325 @default.
- W4387615030 cites W3139443032 @default.
- W4387615030 cites W3144006191 @default.
- W4387615030 cites W3159828090 @default.
- W4387615030 cites W3162695268 @default.
- W4387615030 cites W3166666676 @default.
- W4387615030 cites W3193475997 @default.
- W4387615030 cites W3209193273 @default.
- W4387615030 cites W3209371208 @default.
- W4387615030 cites W3210911584 @default.
- W4387615030 cites W4200448354 @default.
- W4387615030 cites W4210591531 @default.
- W4387615030 cites W4221081935 @default.
- W4387615030 cites W4224118524 @default.
- W4387615030 cites W4225330715 @default.
- W4387615030 cites W4226175317 @default.
- W4387615030 cites W4280645518 @default.
- W4387615030 cites W4288081993 @default.
- W4387615030 cites W4288871723 @default.
- W4387615030 cites W4293236368 @default.
- W4387615030 cites W4294032317 @default.
- W4387615030 cites W4300106797 @default.
- W4387615030 cites W4309624381 @default.
- W4387615030 cites W4312510119 @default.
- W4387615030 cites W4385567918 @default.
- W4387615030 doi "https://doi.org/10.1103/physrevb.108.155304" @default.
- W4387615030 hasPublicationYear "2023" @default.
- W4387615030 type Work @default.
- W4387615030 citedByCount "0" @default.
- W4387615030 crossrefType "journal-article" @default.