Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387616809> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4387616809 endingPage "261" @default.
- W4387616809 startingPage "243" @default.
- W4387616809 abstract "The relationship between a variable (the response variable) and the scores of several other variables (the independent variables) may be described using multiple linear regression analysis. This study compares the L2 (ridge) shrinkage method and least squares shrinkage method when multicollinearity is present in a dataset across various sample sizes. For different sample sizes $(n = 25, n = 50, n = 200,$ and $n = 1000)$, this process was repeated. The relationship between larger sample sizes and covariance was not linear in the simulated data. The results demonstrated that L2 regression is best and generates parsimonious models in the presence of multicollinearity; the higher the degree of multicollinearity, the smaller the shrinkage parameter. The L2 regularization technique also helps to reduce standard errors of regression coefficients and the prediction error of the generated model. This implies that for every change in the dataset values, there is always an optimal value of the shrinkage parameter that minimizes multicollinearity and produces more stable and reliable regression models. In moderation studies where we would like to keep all of the predictor variables, L2 regularization would be the best alternative. Increasing sample size gives stable results after estimation as it helps to reduce the standard errors of the regression coefficients of the predictor variables. It is also the best method to use for greatly inflated standard errors of OLS regression coefficients. OLS works best for independent samples, but correlated covariates should be handled with modern regression methods (L2). Received: February 24, 2023Revised: May 10, 2023 Accepted: June 7, 2023" @default.
- W4387616809 created "2023-10-14" @default.
- W4387616809 creator A5023844896 @default.
- W4387616809 creator A5036628284 @default.
- W4387616809 creator A5044162179 @default.
- W4387616809 creator A5044298335 @default.
- W4387616809 creator A5050949798 @default.
- W4387616809 creator A5053446074 @default.
- W4387616809 creator A5093059360 @default.
- W4387616809 date "2023-10-13" @default.
- W4387616809 modified "2023-10-15" @default.
- W4387616809 title "CALCULATING THE SAMPLE SIZE FOR ORDINARY LEAST SQUARE ESTIMATION IN PRESENCE OF MULTICOLLINEARITY" @default.
- W4387616809 doi "https://doi.org/10.17654/0972361723060" @default.
- W4387616809 hasPublicationYear "2023" @default.
- W4387616809 type Work @default.
- W4387616809 citedByCount "0" @default.
- W4387616809 crossrefType "journal-article" @default.
- W4387616809 hasAuthorship W4387616809A5023844896 @default.
- W4387616809 hasAuthorship W4387616809A5036628284 @default.
- W4387616809 hasAuthorship W4387616809A5044162179 @default.
- W4387616809 hasAuthorship W4387616809A5044298335 @default.
- W4387616809 hasAuthorship W4387616809A5050949798 @default.
- W4387616809 hasAuthorship W4387616809A5053446074 @default.
- W4387616809 hasAuthorship W4387616809A5093059360 @default.
- W4387616809 hasConcept C105795698 @default.
- W4387616809 hasConcept C106192678 @default.
- W4387616809 hasConcept C120068334 @default.
- W4387616809 hasConcept C129848803 @default.
- W4387616809 hasConcept C149782125 @default.
- W4387616809 hasConcept C152732102 @default.
- W4387616809 hasConcept C152877465 @default.
- W4387616809 hasConcept C18747219 @default.
- W4387616809 hasConcept C189285262 @default.
- W4387616809 hasConcept C27574286 @default.
- W4387616809 hasConcept C33923547 @default.
- W4387616809 hasConcept C35519122 @default.
- W4387616809 hasConcept C48921125 @default.
- W4387616809 hasConcept C57381214 @default.
- W4387616809 hasConcept C83546350 @default.
- W4387616809 hasConcept C99656134 @default.
- W4387616809 hasConceptScore W4387616809C105795698 @default.
- W4387616809 hasConceptScore W4387616809C106192678 @default.
- W4387616809 hasConceptScore W4387616809C120068334 @default.
- W4387616809 hasConceptScore W4387616809C129848803 @default.
- W4387616809 hasConceptScore W4387616809C149782125 @default.
- W4387616809 hasConceptScore W4387616809C152732102 @default.
- W4387616809 hasConceptScore W4387616809C152877465 @default.
- W4387616809 hasConceptScore W4387616809C18747219 @default.
- W4387616809 hasConceptScore W4387616809C189285262 @default.
- W4387616809 hasConceptScore W4387616809C27574286 @default.
- W4387616809 hasConceptScore W4387616809C33923547 @default.
- W4387616809 hasConceptScore W4387616809C35519122 @default.
- W4387616809 hasConceptScore W4387616809C48921125 @default.
- W4387616809 hasConceptScore W4387616809C57381214 @default.
- W4387616809 hasConceptScore W4387616809C83546350 @default.
- W4387616809 hasConceptScore W4387616809C99656134 @default.
- W4387616809 hasLocation W43876168091 @default.
- W4387616809 hasOpenAccess W4387616809 @default.
- W4387616809 hasPrimaryLocation W43876168091 @default.
- W4387616809 hasRelatedWork W1987707056 @default.
- W4387616809 hasRelatedWork W207457697 @default.
- W4387616809 hasRelatedWork W2076812056 @default.
- W4387616809 hasRelatedWork W2091633500 @default.
- W4387616809 hasRelatedWork W2378155498 @default.
- W4387616809 hasRelatedWork W2963878163 @default.
- W4387616809 hasRelatedWork W2966052584 @default.
- W4387616809 hasRelatedWork W3014842514 @default.
- W4387616809 hasRelatedWork W3015020719 @default.
- W4387616809 hasRelatedWork W4234250504 @default.
- W4387616809 isParatext "false" @default.
- W4387616809 isRetracted "false" @default.
- W4387616809 workType "article" @default.