Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617059> ?p ?o ?g. }
- W4387617059 abstract "Abstract Indian subcontinent witnessed a rise in surface air temperature (SAT) in recent decades, during the summer months of March, April and May. The monsoon core region (MCR) of India experiences a hot and humid climate, with temperatures typically highest in May and June before the onset of the monsoon. Global climate model (GCM) simulations of SAT are very much essential to understand the future climate of Indian MCR. Biases in GCMs simulations are due to insufficient knowledge of parameterizations and various assumptions that are made to simulate the complex interactions between land, ocean and atmosphere. The objective of this study is to correct the bias in the Coupled Model Intercomparison Project Phase 6 (CMIP6)–GCM simulations of SAT during March, April and May months over MCR for the historical period 1985–2014 and shared socio‐economic pathways (SSPs) SSP2‐4.5 and SSP5‐8.5 for the period 2015–2100. SAT dataset of fifth‐generation reanalysis (ERA5) of the European Centre for Medium‐Range Weather Forecasts (ECMWF) is used as reference dataset to perform bias correction for the historical period. Preliminary investigation of both SAT datasets has shown that there exists considerable warm bias (1.47°C) over the MCR. Bias correction is performed using a one‐dimensional convolutional neural network (CNN‐1D) and a convolutional long short‐term memory network (CNN‐LSTM) deep learning algorithm. The performance of these algorithms is evaluated with the statistical metrics such as root‐mean‐square error (RMSE), normalized root‐mean‐square error, Nash–Sutcliffe efficiency, mean absolute error, percent bias, correlation coefficient and dynamic time warping. RMSE and percent bias were decreased to 0.35°C and 0.8% with CNN‐LSTM algorithm. The CNN‐LSTM algorithm also preserves the year‐to‐year variability of SAT. Hence, CNN‐LSTM algorithm is found to be suitable for the bias correction of GCM simulations of SAT with encouraging results." @default.
- W4387617059 created "2023-10-14" @default.
- W4387617059 creator A5027885657 @default.
- W4387617059 creator A5065199361 @default.
- W4387617059 creator A5066498768 @default.
- W4387617059 creator A5070534635 @default.
- W4387617059 date "2023-10-13" @default.
- W4387617059 modified "2023-10-15" @default.
- W4387617059 title "Application of deep learning algorithms to correct bias in <scp>CMIP6</scp> simulations of surface air temperature over the Indian monsoon core region" @default.
- W4387617059 cites W1524489306 @default.
- W4387617059 cites W1531397077 @default.
- W4387617059 cites W1903655679 @default.
- W4387617059 cites W1909790775 @default.
- W4387617059 cites W1985854434 @default.
- W4387617059 cites W1986433447 @default.
- W4387617059 cites W2007317869 @default.
- W4387617059 cites W2043260633 @default.
- W4387617059 cites W2052457610 @default.
- W4387617059 cites W2064675550 @default.
- W4387617059 cites W2072595094 @default.
- W4387617059 cites W2111711729 @default.
- W4387617059 cites W2141777143 @default.
- W4387617059 cites W2171254377 @default.
- W4387617059 cites W2193503481 @default.
- W4387617059 cites W2318680928 @default.
- W4387617059 cites W2341721186 @default.
- W4387617059 cites W2528017898 @default.
- W4387617059 cites W2613687907 @default.
- W4387617059 cites W2889904703 @default.
- W4387617059 cites W2909837925 @default.
- W4387617059 cites W2959517408 @default.
- W4387617059 cites W2962949934 @default.
- W4387617059 cites W2968995990 @default.
- W4387617059 cites W2982896308 @default.
- W4387617059 cites W3005197680 @default.
- W4387617059 cites W3010717477 @default.
- W4387617059 cites W3011863222 @default.
- W4387617059 cites W3080669681 @default.
- W4387617059 cites W3092325799 @default.
- W4387617059 cites W3097418504 @default.
- W4387617059 cites W3113646778 @default.
- W4387617059 cites W3185755105 @default.
- W4387617059 cites W3188612754 @default.
- W4387617059 cites W3194819631 @default.
- W4387617059 cites W4200357397 @default.
- W4387617059 cites W4206200659 @default.
- W4387617059 cites W4206540629 @default.
- W4387617059 cites W4220793849 @default.
- W4387617059 cites W4224036482 @default.
- W4387617059 cites W4292379757 @default.
- W4387617059 cites W4295763148 @default.
- W4387617059 cites W4313430801 @default.
- W4387617059 cites W4315649142 @default.
- W4387617059 cites W4316115668 @default.
- W4387617059 cites W4317802955 @default.
- W4387617059 cites W4318425567 @default.
- W4387617059 cites W4321490771 @default.
- W4387617059 cites W4322721694 @default.
- W4387617059 cites W4361218342 @default.
- W4387617059 cites W4365455703 @default.
- W4387617059 cites W4381687522 @default.
- W4387617059 doi "https://doi.org/10.1002/joc.8276" @default.
- W4387617059 hasPublicationYear "2023" @default.
- W4387617059 type Work @default.
- W4387617059 citedByCount "0" @default.
- W4387617059 crossrefType "journal-article" @default.
- W4387617059 hasAuthorship W4387617059A5027885657 @default.
- W4387617059 hasAuthorship W4387617059A5065199361 @default.
- W4387617059 hasAuthorship W4387617059A5066498768 @default.
- W4387617059 hasAuthorship W4387617059A5070534635 @default.
- W4387617059 hasConcept C105795698 @default.
- W4387617059 hasConcept C111368507 @default.
- W4387617059 hasConcept C11413529 @default.
- W4387617059 hasConcept C127313418 @default.
- W4387617059 hasConcept C132651083 @default.
- W4387617059 hasConcept C134097258 @default.
- W4387617059 hasConcept C136996986 @default.
- W4387617059 hasConcept C139945424 @default.
- W4387617059 hasConcept C141452985 @default.
- W4387617059 hasConcept C143742823 @default.
- W4387617059 hasConcept C153294291 @default.
- W4387617059 hasConcept C154945302 @default.
- W4387617059 hasConcept C168754636 @default.
- W4387617059 hasConcept C205649164 @default.
- W4387617059 hasConcept C25022447 @default.
- W4387617059 hasConcept C33923547 @default.
- W4387617059 hasConcept C39432304 @default.
- W4387617059 hasConcept C41008148 @default.
- W4387617059 hasConcept C49204034 @default.
- W4387617059 hasConcept C65440619 @default.
- W4387617059 hasConcept C81363708 @default.
- W4387617059 hasConceptScore W4387617059C105795698 @default.
- W4387617059 hasConceptScore W4387617059C111368507 @default.
- W4387617059 hasConceptScore W4387617059C11413529 @default.
- W4387617059 hasConceptScore W4387617059C127313418 @default.
- W4387617059 hasConceptScore W4387617059C132651083 @default.
- W4387617059 hasConceptScore W4387617059C134097258 @default.
- W4387617059 hasConceptScore W4387617059C136996986 @default.
- W4387617059 hasConceptScore W4387617059C139945424 @default.
- W4387617059 hasConceptScore W4387617059C141452985 @default.