Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617233> ?p ?o ?g. }
- W4387617233 endingPage "4272" @default.
- W4387617233 startingPage "4272" @default.
- W4387617233 abstract "Deep learning approaches have demonstrated great achievements in the field of computer-aided medical image analysis, improving the precision of diagnosis across a range of medical disorders. These developments have not, however, been immune to the appearance of adversarial attacks, creating the possibility of incorrect diagnosis with substantial clinical implications. Concurrently, the field has seen notable advancements in defending against such targeted adversary intrusions in deep medical diagnostic systems. In the context of medical image analysis, this article provides a comprehensive survey of current advancements in adversarial attacks and their accompanying defensive strategies. In addition, a comprehensive conceptual analysis is presented, including several adversarial attacks and defensive strategies designed for the interpretation of medical images. This survey, which draws on qualitative and quantitative findings, concludes with a thorough discussion of the problems with adversarial attack and defensive mechanisms that are unique to medical image analysis systems, opening up new directions for future research. We identified that the main problems with adversarial attack and defense in medical imaging include dataset and labeling, computational resources, robustness against target attacks, evaluation of transferability and adaptability, interpretability and explainability, real-time detection and response, and adversarial attacks in multi-modal fusion. The area of medical imaging adversarial attack and defensive mechanisms might move toward more secure, dependable, and therapeutically useful deep learning systems by filling in these research gaps and following these future objectives." @default.
- W4387617233 created "2023-10-14" @default.
- W4387617233 creator A5010388353 @default.
- W4387617233 creator A5011852734 @default.
- W4387617233 creator A5022092645 @default.
- W4387617233 creator A5023088189 @default.
- W4387617233 creator A5030009218 @default.
- W4387617233 creator A5039887086 @default.
- W4387617233 creator A5040497240 @default.
- W4387617233 creator A5093059448 @default.
- W4387617233 creator A5093059449 @default.
- W4387617233 date "2023-10-13" @default.
- W4387617233 modified "2023-10-15" @default.
- W4387617233 title "A Comprehensive Review and Analysis of Deep Learning-Based Medical Image Adversarial Attack and Defense" @default.
- W4387617233 cites W1969496006 @default.
- W4387617233 cites W2080628940 @default.
- W4387617233 cites W2180612164 @default.
- W4387617233 cites W2194775991 @default.
- W4387617233 cites W2243397390 @default.
- W4387617233 cites W2310992461 @default.
- W4387617233 cites W2603766943 @default.
- W4387617233 cites W2604505099 @default.
- W4387617233 cites W2611576673 @default.
- W4387617233 cites W2751686900 @default.
- W4387617233 cites W2777186991 @default.
- W4387617233 cites W2798302089 @default.
- W4387617233 cites W2807189427 @default.
- W4387617233 cites W2835378829 @default.
- W4387617233 cites W2890430415 @default.
- W4387617233 cites W2914959431 @default.
- W4387617233 cites W2924551358 @default.
- W4387617233 cites W2944990428 @default.
- W4387617233 cites W2963857521 @default.
- W4387617233 cites W2979304762 @default.
- W4387617233 cites W2979479162 @default.
- W4387617233 cites W2980214238 @default.
- W4387617233 cites W2980312605 @default.
- W4387617233 cites W2983683123 @default.
- W4387617233 cites W2986088889 @default.
- W4387617233 cites W2993199583 @default.
- W4387617233 cites W2997532515 @default.
- W4387617233 cites W3013277995 @default.
- W4387617233 cites W3021182036 @default.
- W4387617233 cites W3022908591 @default.
- W4387617233 cites W3026309613 @default.
- W4387617233 cites W3028178168 @default.
- W4387617233 cites W3035751626 @default.
- W4387617233 cites W3037287540 @default.
- W4387617233 cites W3040617750 @default.
- W4387617233 cites W3047095708 @default.
- W4387617233 cites W3089084773 @default.
- W4387617233 cites W3090005963 @default.
- W4387617233 cites W3091171660 @default.
- W4387617233 cites W3092223267 @default.
- W4387617233 cites W3094636577 @default.
- W4387617233 cites W3095095914 @default.
- W4387617233 cites W3096165964 @default.
- W4387617233 cites W3101156210 @default.
- W4387617233 cites W3103557498 @default.
- W4387617233 cites W3105300716 @default.
- W4387617233 cites W3107451140 @default.
- W4387617233 cites W3107645027 @default.
- W4387617233 cites W3110292931 @default.
- W4387617233 cites W3111718976 @default.
- W4387617233 cites W3122924283 @default.
- W4387617233 cites W3153863894 @default.
- W4387617233 cites W3159173588 @default.
- W4387617233 cites W3162744106 @default.
- W4387617233 cites W3164873617 @default.
- W4387617233 cites W3171579381 @default.
- W4387617233 cites W3171806107 @default.
- W4387617233 cites W3189294918 @default.
- W4387617233 cites W3189405384 @default.
- W4387617233 cites W3192495034 @default.
- W4387617233 cites W3198384199 @default.
- W4387617233 cites W3199096328 @default.
- W4387617233 cites W3201839864 @default.
- W4387617233 cites W3211639647 @default.
- W4387617233 cites W4200582787 @default.
- W4387617233 cites W4205603412 @default.
- W4387617233 cites W4210781309 @default.
- W4387617233 cites W4220723869 @default.
- W4387617233 cites W4220775753 @default.
- W4387617233 cites W4220840380 @default.
- W4387617233 cites W4224255787 @default.
- W4387617233 cites W4224280245 @default.
- W4387617233 cites W4225270188 @default.
- W4387617233 cites W4225851494 @default.
- W4387617233 cites W4229016538 @default.
- W4387617233 cites W4281707480 @default.
- W4387617233 cites W4282927465 @default.
- W4387617233 cites W4283167468 @default.
- W4387617233 cites W4285004868 @default.
- W4387617233 cites W4285087090 @default.
- W4387617233 cites W4285176469 @default.
- W4387617233 cites W4285246116 @default.
- W4387617233 cites W4286437554 @default.
- W4387617233 cites W4286560039 @default.