Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617405> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W4387617405 endingPage "11264" @default.
- W4387617405 startingPage "11264" @default.
- W4387617405 abstract "Recently, deep learning techniques have been used for low-dose CT (LDCT) reconstruction to reduce the radiation risk for patients. Despite the improvement in performance, the network models used for LDCT reconstruction are becoming increasingly complex and computationally expensive under the mantra of “deeper is better”. However, in clinical settings, lightweight models with a low computational cost and short reconstruction times are more popular. For this reason, this paper proposes a computationally efficient CNN model with a simple structure for sparse-view LDCT reconstruction. Inspired by super-resolution networks for natural images, the proposed model interpolates projection data directly in the sinogram domain with a fully convolutional neural network that consists of only four convolution layers. The proposed model can be used directly for sparse-view CT reconstruction by concatenating the classic filtered back-projection (FBP) module, or it can be incorporated into existing dual-domain reconstruction frameworks as a generic sinogram domain module. The proposed model is validated on both the 2016 NIH-AAPM-Mayo Clinic LDCT Grand Challenge dataset and The Lung Image Database Consortium dataset. It is shown that despite the computational simplicity of the proposed model, its reconstruction performance at lower sparsity levels (1/2 and 1/4 radiation dose) is comparable to that of the sophisticated baseline models and shows some advantages at higher sparsity levels (1/8 and 1/15 radiation dose). Compared to existing sinogram domain baseline models, the proposed model is computationally efficient and easy to train on small training datasets, and is thus well suited for clinical real-time reconstruction tasks." @default.
- W4387617405 created "2023-10-14" @default.
- W4387617405 creator A5000683189 @default.
- W4387617405 creator A5021201289 @default.
- W4387617405 creator A5023971713 @default.
- W4387617405 creator A5031992643 @default.
- W4387617405 creator A5038641029 @default.
- W4387617405 creator A5062384828 @default.
- W4387617405 creator A5068201443 @default.
- W4387617405 date "2023-10-13" @default.
- W4387617405 modified "2023-10-15" @default.
- W4387617405 title "An Efficient Sinogram Domain Fully Convolutional Interpolation Network for Sparse-View Computed Tomography Reconstruction" @default.
- W4387617405 cites W1986649315 @default.
- W4387617405 cites W2121571320 @default.
- W4387617405 cites W2177552685 @default.
- W4387617405 cites W2476548250 @default.
- W4387617405 cites W2570202822 @default.
- W4387617405 cites W2584483805 @default.
- W4387617405 cites W2748739903 @default.
- W4387617405 cites W2752731244 @default.
- W4387617405 cites W2766327008 @default.
- W4387617405 cites W2780544323 @default.
- W4387617405 cites W2793419304 @default.
- W4387617405 cites W2807371744 @default.
- W4387617405 cites W2889470718 @default.
- W4387617405 cites W2946539594 @default.
- W4387617405 cites W2981735661 @default.
- W4387617405 cites W2995138985 @default.
- W4387617405 cites W3046301294 @default.
- W4387617405 cites W3097056396 @default.
- W4387617405 cites W3103645830 @default.
- W4387617405 cites W3105751747 @default.
- W4387617405 cites W3109288119 @default.
- W4387617405 cites W4229372388 @default.
- W4387617405 cites W4295938505 @default.
- W4387617405 cites W4298264214 @default.
- W4387617405 cites W4362589019 @default.
- W4387617405 doi "https://doi.org/10.3390/app132011264" @default.
- W4387617405 hasPublicationYear "2023" @default.
- W4387617405 type Work @default.
- W4387617405 citedByCount "0" @default.
- W4387617405 crossrefType "journal-article" @default.
- W4387617405 hasAuthorship W4387617405A5000683189 @default.
- W4387617405 hasAuthorship W4387617405A5021201289 @default.
- W4387617405 hasAuthorship W4387617405A5023971713 @default.
- W4387617405 hasAuthorship W4387617405A5031992643 @default.
- W4387617405 hasAuthorship W4387617405A5038641029 @default.
- W4387617405 hasAuthorship W4387617405A5062384828 @default.
- W4387617405 hasAuthorship W4387617405A5068201443 @default.
- W4387617405 hasBestOaLocation W43876174051 @default.
- W4387617405 hasConcept C108583219 @default.
- W4387617405 hasConcept C11413529 @default.
- W4387617405 hasConcept C115961682 @default.
- W4387617405 hasConcept C134306372 @default.
- W4387617405 hasConcept C137800194 @default.
- W4387617405 hasConcept C141379421 @default.
- W4387617405 hasConcept C153180895 @default.
- W4387617405 hasConcept C154945302 @default.
- W4387617405 hasConcept C31972630 @default.
- W4387617405 hasConcept C33923547 @default.
- W4387617405 hasConcept C36503486 @default.
- W4387617405 hasConcept C41008148 @default.
- W4387617405 hasConcept C57493831 @default.
- W4387617405 hasConcept C81363708 @default.
- W4387617405 hasConceptScore W4387617405C108583219 @default.
- W4387617405 hasConceptScore W4387617405C11413529 @default.
- W4387617405 hasConceptScore W4387617405C115961682 @default.
- W4387617405 hasConceptScore W4387617405C134306372 @default.
- W4387617405 hasConceptScore W4387617405C137800194 @default.
- W4387617405 hasConceptScore W4387617405C141379421 @default.
- W4387617405 hasConceptScore W4387617405C153180895 @default.
- W4387617405 hasConceptScore W4387617405C154945302 @default.
- W4387617405 hasConceptScore W4387617405C31972630 @default.
- W4387617405 hasConceptScore W4387617405C33923547 @default.
- W4387617405 hasConceptScore W4387617405C36503486 @default.
- W4387617405 hasConceptScore W4387617405C41008148 @default.
- W4387617405 hasConceptScore W4387617405C57493831 @default.
- W4387617405 hasConceptScore W4387617405C81363708 @default.
- W4387617405 hasIssue "20" @default.
- W4387617405 hasLocation W43876174051 @default.
- W4387617405 hasOpenAccess W4387617405 @default.
- W4387617405 hasPrimaryLocation W43876174051 @default.
- W4387617405 hasRelatedWork W2004988775 @default.
- W4387617405 hasRelatedWork W2611989081 @default.
- W4387617405 hasRelatedWork W3029198973 @default.
- W4387617405 hasRelatedWork W3133861977 @default.
- W4387617405 hasRelatedWork W3167935049 @default.
- W4387617405 hasRelatedWork W3193565141 @default.
- W4387617405 hasRelatedWork W4226493464 @default.
- W4387617405 hasRelatedWork W4293226380 @default.
- W4387617405 hasRelatedWork W4312417841 @default.
- W4387617405 hasRelatedWork W4375867731 @default.
- W4387617405 hasVolume "13" @default.
- W4387617405 isParatext "false" @default.
- W4387617405 isRetracted "false" @default.
- W4387617405 workType "article" @default.