Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617471> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4387617471 endingPage "291" @default.
- W4387617471 startingPage "291" @default.
- W4387617471 abstract "For autonomous vehicles driving in off-road environments, it is crucial to have a sensitive environmental perception ability. However, semantic segmentation in complex scenes remains a challenging task. Most current methods for off-road environments often have the problems of single scene and low accuracy. Therefore, this paper proposes a semantic segmentation network based on LiDAR called Multi-scale Augmentation Point-Cylinder Network (MAPC-Net). The network uses a multi-layer receptive field fusion module to extract features from objects of different scales in off-road environments. Gated feature fusion is used to fuse PointTensor and Cylinder for encoding and decoding. In addition, we use CARLA to build off-road environments for obtaining datasets, and employ linear interpolation to enhance the training data to solve the problem of sample imbalance. Finally, we design experiments to verify the excellent semantic segmentation ability of MAPC-Net in an off-road environment. We also demonstrate the effectiveness of the multi-layer receptive field fusion module and data augmentation." @default.
- W4387617471 created "2023-10-14" @default.
- W4387617471 creator A5016504923 @default.
- W4387617471 creator A5025588570 @default.
- W4387617471 creator A5044658392 @default.
- W4387617471 creator A5059484864 @default.
- W4387617471 creator A5078446913 @default.
- W4387617471 date "2023-10-13" @default.
- W4387617471 modified "2023-10-15" @default.
- W4387617471 title "Off-Road Environment Semantic Segmentation for Autonomous Vehicles Based on Multi-Scale Feature Fusion" @default.
- W4387617471 cites W2147357829 @default.
- W4387617471 cites W2147674777 @default.
- W4387617471 cites W2216863212 @default.
- W4387617471 cites W2520369361 @default.
- W4387617471 cites W2737777104 @default.
- W4387617471 cites W2795587607 @default.
- W4387617471 cites W2962912109 @default.
- W4387617471 cites W2963083779 @default.
- W4387617471 cites W2963125977 @default.
- W4387617471 cites W2963727135 @default.
- W4387617471 cites W2968557240 @default.
- W4387617471 cites W2971265822 @default.
- W4387617471 cites W2981083640 @default.
- W4387617471 cites W3012494314 @default.
- W4387617471 cites W3035275207 @default.
- W4387617471 cites W3093434340 @default.
- W4387617471 cites W3094897602 @default.
- W4387617471 cites W3109944402 @default.
- W4387617471 cites W3137210930 @default.
- W4387617471 cites W3177330511 @default.
- W4387617471 cites W3206164009 @default.
- W4387617471 cites W4385269011 @default.
- W4387617471 doi "https://doi.org/10.3390/wevj14100291" @default.
- W4387617471 hasPublicationYear "2023" @default.
- W4387617471 type Work @default.
- W4387617471 citedByCount "0" @default.
- W4387617471 crossrefType "journal-article" @default.
- W4387617471 hasAuthorship W4387617471A5016504923 @default.
- W4387617471 hasAuthorship W4387617471A5025588570 @default.
- W4387617471 hasAuthorship W4387617471A5044658392 @default.
- W4387617471 hasAuthorship W4387617471A5059484864 @default.
- W4387617471 hasAuthorship W4387617471A5078446913 @default.
- W4387617471 hasBestOaLocation W43876174711 @default.
- W4387617471 hasConcept C119599485 @default.
- W4387617471 hasConcept C127413603 @default.
- W4387617471 hasConcept C138885662 @default.
- W4387617471 hasConcept C141353440 @default.
- W4387617471 hasConcept C154945302 @default.
- W4387617471 hasConcept C202444582 @default.
- W4387617471 hasConcept C205649164 @default.
- W4387617471 hasConcept C2776401178 @default.
- W4387617471 hasConcept C2778755073 @default.
- W4387617471 hasConcept C31972630 @default.
- W4387617471 hasConcept C33923547 @default.
- W4387617471 hasConcept C41008148 @default.
- W4387617471 hasConcept C41895202 @default.
- W4387617471 hasConcept C58640448 @default.
- W4387617471 hasConcept C89600930 @default.
- W4387617471 hasConcept C9652623 @default.
- W4387617471 hasConceptScore W4387617471C119599485 @default.
- W4387617471 hasConceptScore W4387617471C127413603 @default.
- W4387617471 hasConceptScore W4387617471C138885662 @default.
- W4387617471 hasConceptScore W4387617471C141353440 @default.
- W4387617471 hasConceptScore W4387617471C154945302 @default.
- W4387617471 hasConceptScore W4387617471C202444582 @default.
- W4387617471 hasConceptScore W4387617471C205649164 @default.
- W4387617471 hasConceptScore W4387617471C2776401178 @default.
- W4387617471 hasConceptScore W4387617471C2778755073 @default.
- W4387617471 hasConceptScore W4387617471C31972630 @default.
- W4387617471 hasConceptScore W4387617471C33923547 @default.
- W4387617471 hasConceptScore W4387617471C41008148 @default.
- W4387617471 hasConceptScore W4387617471C41895202 @default.
- W4387617471 hasConceptScore W4387617471C58640448 @default.
- W4387617471 hasConceptScore W4387617471C89600930 @default.
- W4387617471 hasConceptScore W4387617471C9652623 @default.
- W4387617471 hasIssue "10" @default.
- W4387617471 hasLocation W43876174711 @default.
- W4387617471 hasOpenAccess W4387617471 @default.
- W4387617471 hasPrimaryLocation W43876174711 @default.
- W4387617471 hasRelatedWork W1570848052 @default.
- W4387617471 hasRelatedWork W1924837940 @default.
- W4387617471 hasRelatedWork W2079488604 @default.
- W4387617471 hasRelatedWork W2354322770 @default.
- W4387617471 hasRelatedWork W2373192430 @default.
- W4387617471 hasRelatedWork W2379407973 @default.
- W4387617471 hasRelatedWork W3000097931 @default.
- W4387617471 hasRelatedWork W3159661535 @default.
- W4387617471 hasRelatedWork W4239268388 @default.
- W4387617471 hasRelatedWork W4243305035 @default.
- W4387617471 hasVolume "14" @default.
- W4387617471 isParatext "false" @default.
- W4387617471 isRetracted "false" @default.
- W4387617471 workType "article" @default.