Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617478> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387617478 abstract "Lattice structures in additive manufacturing of 316L stainless steel have gained increasing attention due to their well-suited mechanical properties and lightweight characteristics. Infill structures such as honeycomb, lattice, and gyroid have shown promise in achieving desirable mechanical properties for various applications. However, the design process of these structures is complex and time-consuming. In this study, we propose a machine learning-based approach to optimize the design of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using laser powder bed fusion (L-PBF) technology under different loading conditions. A dataset of simulated lattice structures with varying geometries, wall thickness, distance, and angle using a computational model that simulates the mechanical behavior of infill structures under different loading conditions was generated. The dataset was then used to train a machine learning model to predict the mechanical properties of infill structures based on their design parameters. Using the trained machine learning model, we then performed a design exploration to identify the optimal infill structure geometry for a given set of mechanical requirements and loading conditions. Finally, we fabricated the optimized infill structures using L-PBF technology and conducted a series of mechanical tests to validate their performance under different loading conditions. Overall, our study demonstrates the potential of machine learning-based approaches for efficient and effective designing of honeycomb, lattice, and gyroid infill structures in 316L stainless steel fabricated using L-PBF technology under different loading conditions. Furthermore, this approach can be used for dynamic loading studies of infill structures." @default.
- W4387617478 created "2023-10-14" @default.
- W4387617478 creator A5017528217 @default.
- W4387617478 creator A5018912107 @default.
- W4387617478 creator A5023878966 @default.
- W4387617478 creator A5034057168 @default.
- W4387617478 creator A5056745549 @default.
- W4387617478 creator A5093059480 @default.
- W4387617478 date "2023-10-13" @default.
- W4387617478 modified "2023-10-15" @default.
- W4387617478 title "Predictive modeling of lattice structure design for 316L stainless steel using machine learning in the L-PBF process" @default.
- W4387617478 cites W1991743490 @default.
- W4387617478 cites W2016460082 @default.
- W4387617478 cites W2200848781 @default.
- W4387617478 cites W2272112894 @default.
- W4387617478 cites W2743884968 @default.
- W4387617478 cites W2758160981 @default.
- W4387617478 cites W2902381023 @default.
- W4387617478 cites W2902893625 @default.
- W4387617478 cites W2909096226 @default.
- W4387617478 cites W2920907696 @default.
- W4387617478 cites W2937750627 @default.
- W4387617478 cites W2969778829 @default.
- W4387617478 cites W2976336048 @default.
- W4387617478 cites W3033899501 @default.
- W4387617478 cites W3108462833 @default.
- W4387617478 cites W3138781151 @default.
- W4387617478 cites W3152338637 @default.
- W4387617478 cites W3157830229 @default.
- W4387617478 cites W3167041773 @default.
- W4387617478 cites W3198375450 @default.
- W4387617478 cites W3207949713 @default.
- W4387617478 cites W4200517533 @default.
- W4387617478 cites W4214823831 @default.
- W4387617478 cites W4307262092 @default.
- W4387617478 cites W4313887577 @default.
- W4387617478 doi "https://doi.org/10.2351/7.0001174" @default.
- W4387617478 hasPublicationYear "2023" @default.
- W4387617478 type Work @default.
- W4387617478 citedByCount "0" @default.
- W4387617478 crossrefType "journal-article" @default.
- W4387617478 hasAuthorship W4387617478A5017528217 @default.
- W4387617478 hasAuthorship W4387617478A5018912107 @default.
- W4387617478 hasAuthorship W4387617478A5023878966 @default.
- W4387617478 hasAuthorship W4387617478A5034057168 @default.
- W4387617478 hasAuthorship W4387617478A5056745549 @default.
- W4387617478 hasAuthorship W4387617478A5093059480 @default.
- W4387617478 hasBestOaLocation W43876174781 @default.
- W4387617478 hasConcept C121332964 @default.
- W4387617478 hasConcept C127413603 @default.
- W4387617478 hasConcept C15920480 @default.
- W4387617478 hasConcept C159985019 @default.
- W4387617478 hasConcept C171736797 @default.
- W4387617478 hasConcept C192562407 @default.
- W4387617478 hasConcept C207003234 @default.
- W4387617478 hasConcept C24890656 @default.
- W4387617478 hasConcept C2781204021 @default.
- W4387617478 hasConcept C2781219549 @default.
- W4387617478 hasConcept C521977710 @default.
- W4387617478 hasConcept C66938386 @default.
- W4387617478 hasConcept C78519656 @default.
- W4387617478 hasConceptScore W4387617478C121332964 @default.
- W4387617478 hasConceptScore W4387617478C127413603 @default.
- W4387617478 hasConceptScore W4387617478C15920480 @default.
- W4387617478 hasConceptScore W4387617478C159985019 @default.
- W4387617478 hasConceptScore W4387617478C171736797 @default.
- W4387617478 hasConceptScore W4387617478C192562407 @default.
- W4387617478 hasConceptScore W4387617478C207003234 @default.
- W4387617478 hasConceptScore W4387617478C24890656 @default.
- W4387617478 hasConceptScore W4387617478C2781204021 @default.
- W4387617478 hasConceptScore W4387617478C2781219549 @default.
- W4387617478 hasConceptScore W4387617478C521977710 @default.
- W4387617478 hasConceptScore W4387617478C66938386 @default.
- W4387617478 hasConceptScore W4387617478C78519656 @default.
- W4387617478 hasIssue "4" @default.
- W4387617478 hasLocation W43876174781 @default.
- W4387617478 hasOpenAccess W4387617478 @default.
- W4387617478 hasPrimaryLocation W43876174781 @default.
- W4387617478 hasRelatedWork W2006503866 @default.
- W4387617478 hasRelatedWork W2052418321 @default.
- W4387617478 hasRelatedWork W2058552998 @default.
- W4387617478 hasRelatedWork W2244570601 @default.
- W4387617478 hasRelatedWork W2909203648 @default.
- W4387617478 hasRelatedWork W2991573901 @default.
- W4387617478 hasRelatedWork W3190456825 @default.
- W4387617478 hasRelatedWork W4229066552 @default.
- W4387617478 hasRelatedWork W4251743251 @default.
- W4387617478 hasRelatedWork W4387119373 @default.
- W4387617478 hasVolume "35" @default.
- W4387617478 isParatext "false" @default.
- W4387617478 isRetracted "false" @default.
- W4387617478 workType "article" @default.