Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387617664> ?p ?o ?g. }
- W4387617664 endingPage "2926" @default.
- W4387617664 startingPage "2890" @default.
- W4387617664 abstract "We propose to adopt statistical regression as the projection operator to enable data-driven learning of the operators in the Mori–Zwanzig formalism. We present a principled method to extract the Markov and memory operators for any regression models. We show that the choice of linear regression results in a recently proposed data-driven learning algorithm based on Mori’s projection operator, which is a higher-order approximate Koopman learning method. We show that more expressive nonlinear regression models naturally fill in the gap between the highly idealized and computationally efficient Mori’s projection operator and the most optimal yet computationally infeasible Zwanzig’s projection operator. We performed numerical experiments and extracted the operators for an array of regression-based projections, including linear, polynomial, spline, and neural network–based regressions, showing a progressive improvement as the complexity of the regression model increased. Our proposition provides a general framework to extract memory-dependent corrections and can be readily applied to an array of data-driven learning methods for stationary dynamical systems in the literature." @default.
- W4387617664 created "2023-10-14" @default.
- W4387617664 creator A5045656065 @default.
- W4387617664 creator A5064658078 @default.
- W4387617664 creator A5073620884 @default.
- W4387617664 creator A5077355414 @default.
- W4387617664 date "2023-10-13" @default.
- W4387617664 modified "2023-10-15" @default.
- W4387617664 title "Regression-Based Projection for Learning Mori–Zwanzig Operators" @default.
- W4387617664 cites W1549386224 @default.
- W4387617664 cites W1647323343 @default.
- W4387617664 cites W1909010623 @default.
- W4387617664 cites W1982999858 @default.
- W4387617664 cites W1991156379 @default.
- W4387617664 cites W2009447971 @default.
- W4387617664 cites W2014356541 @default.
- W4387617664 cites W2017859351 @default.
- W4387617664 cites W2018606375 @default.
- W4387617664 cites W2027319740 @default.
- W4387617664 cites W2043077074 @default.
- W4387617664 cites W2049967935 @default.
- W4387617664 cites W2053450287 @default.
- W4387617664 cites W2054184517 @default.
- W4387617664 cites W2060806808 @default.
- W4387617664 cites W2064675550 @default.
- W4387617664 cites W2101116262 @default.
- W4387617664 cites W2124138287 @default.
- W4387617664 cites W2139923370 @default.
- W4387617664 cites W2141394518 @default.
- W4387617664 cites W2164954534 @default.
- W4387617664 cites W2168222921 @default.
- W4387617664 cites W2239232218 @default.
- W4387617664 cites W2550355449 @default.
- W4387617664 cites W2619115145 @default.
- W4387617664 cites W2730644873 @default.
- W4387617664 cites W2765861397 @default.
- W4387617664 cites W2777417212 @default.
- W4387617664 cites W2916753373 @default.
- W4387617664 cites W2962947529 @default.
- W4387617664 cites W2969434393 @default.
- W4387617664 cites W2973004389 @default.
- W4387617664 cites W2974922583 @default.
- W4387617664 cites W2979313281 @default.
- W4387617664 cites W3000199965 @default.
- W4387617664 cites W3002463649 @default.
- W4387617664 cites W3008005432 @default.
- W4387617664 cites W3041887065 @default.
- W4387617664 cites W3049633943 @default.
- W4387617664 cites W3097134564 @default.
- W4387617664 cites W3098926118 @default.
- W4387617664 cites W3099674394 @default.
- W4387617664 cites W3105713006 @default.
- W4387617664 cites W3125149060 @default.
- W4387617664 cites W3137474564 @default.
- W4387617664 cites W315611903 @default.
- W4387617664 cites W3197860777 @default.
- W4387617664 cites W3197968796 @default.
- W4387617664 cites W3215447930 @default.
- W4387617664 doi "https://doi.org/10.1137/22m1506146" @default.
- W4387617664 hasPublicationYear "2023" @default.
- W4387617664 type Work @default.
- W4387617664 citedByCount "0" @default.
- W4387617664 crossrefType "journal-article" @default.
- W4387617664 hasAuthorship W4387617664A5045656065 @default.
- W4387617664 hasAuthorship W4387617664A5064658078 @default.
- W4387617664 hasAuthorship W4387617664A5073620884 @default.
- W4387617664 hasAuthorship W4387617664A5077355414 @default.
- W4387617664 hasConcept C104317684 @default.
- W4387617664 hasConcept C105795698 @default.
- W4387617664 hasConcept C11413529 @default.
- W4387617664 hasConcept C118615104 @default.
- W4387617664 hasConcept C119857082 @default.
- W4387617664 hasConcept C134306372 @default.
- W4387617664 hasConcept C152877465 @default.
- W4387617664 hasConcept C154945302 @default.
- W4387617664 hasConcept C158448853 @default.
- W4387617664 hasConcept C17020691 @default.
- W4387617664 hasConcept C185592680 @default.
- W4387617664 hasConcept C28826006 @default.
- W4387617664 hasConcept C33923547 @default.
- W4387617664 hasConcept C41008148 @default.
- W4387617664 hasConcept C43929395 @default.
- W4387617664 hasConcept C48921125 @default.
- W4387617664 hasConcept C50644808 @default.
- W4387617664 hasConcept C55493867 @default.
- W4387617664 hasConcept C57493831 @default.
- W4387617664 hasConcept C83546350 @default.
- W4387617664 hasConcept C86339819 @default.
- W4387617664 hasConcept C90119067 @default.
- W4387617664 hasConcept C98763669 @default.
- W4387617664 hasConceptScore W4387617664C104317684 @default.
- W4387617664 hasConceptScore W4387617664C105795698 @default.
- W4387617664 hasConceptScore W4387617664C11413529 @default.
- W4387617664 hasConceptScore W4387617664C118615104 @default.
- W4387617664 hasConceptScore W4387617664C119857082 @default.
- W4387617664 hasConceptScore W4387617664C134306372 @default.
- W4387617664 hasConceptScore W4387617664C152877465 @default.
- W4387617664 hasConceptScore W4387617664C154945302 @default.