Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387619114> ?p ?o ?g. }
- W4387619114 endingPage "100501" @default.
- W4387619114 startingPage "100501" @default.
- W4387619114 abstract "Background and purposeArtificial Intelligence (AI)-based auto-contouring for treatment planning in radiotherapy needs extensive clinical validation, including the impact of editing after automatic segmentation. The aims of this study were to assess the performance of a commercial system for Clinical Target Volumes (CTVs) (prostate/seminal vesicles) and selected Organs at Risk (OARs) (rectum/bladder/femoral heads+femurs), evaluating also inter-observer variability (manual vs automatic+editing) and the reduction of contouring time.Materials and methodsTwo expert observers contoured CTVs/OARs of 20 patients in our Treatment Planning System (TPS). Computed Tomography (CT) images were sent to the automatic contouring workstation: automatic contours were generated and sent back to TPS, where observers could edit them if necessary. Inter- and intra-observer consistency was estimated using Dice Similarity Coefficients (DSC). Radiation oncologists were also asked to score the quality of automatic contours, ranging from 1 (complete re-contouring) to 5 (no editing). Contouring times (manual vs automatic+edit) were compared.ResultsDSCs (manual vs automatic only) were consistent with inter-observer variability (between 0.65 for seminal vesicles and 0.94 for bladder); editing further improved performances (range: 0.76-0.94). The median clinical score was 4 (little editing) and it was <4 in 3/2 patients for the two observers respectively. Inter-observer variability of automatic+editing contours improved significantly, being lower than manual contouring (e.g.: seminal vesicles: 0.83vs0.73; prostate: 0.86vs0.83; rectum: 0.96vs0.81). Oncologist contouring time reduced from 17-24 minutes of manual contouring time to 3-7 minutes of editing time for the two observers (p<0.01).ConclusionAutomatic contouring with a commercial AI-based system followed by editing can replace manual contouring, resulting in significantly reduced time for segmentation and better consistency between operators." @default.
- W4387619114 created "2023-10-14" @default.
- W4387619114 creator A5000313858 @default.
- W4387619114 creator A5023108783 @default.
- W4387619114 creator A5027115231 @default.
- W4387619114 creator A5055095696 @default.
- W4387619114 creator A5055642637 @default.
- W4387619114 creator A5056489738 @default.
- W4387619114 creator A5060860935 @default.
- W4387619114 creator A5062607255 @default.
- W4387619114 creator A5076136727 @default.
- W4387619114 creator A5077224068 @default.
- W4387619114 date "2023-10-01" @default.
- W4387619114 modified "2023-10-15" @default.
- W4387619114 title "Real-world validation of Artificial Intelligence-based Computed Tomography auto-contouring for prostate cancer radiotherapy planning" @default.
- W4387619114 cites W1987869189 @default.
- W4387619114 cites W1992996001 @default.
- W4387619114 cites W2001142427 @default.
- W4387619114 cites W2010016760 @default.
- W4387619114 cites W2023660535 @default.
- W4387619114 cites W2028911404 @default.
- W4387619114 cites W2065114878 @default.
- W4387619114 cites W2108057069 @default.
- W4387619114 cites W2139239770 @default.
- W4387619114 cites W2793258843 @default.
- W4387619114 cites W2805205462 @default.
- W4387619114 cites W2808391149 @default.
- W4387619114 cites W2890012362 @default.
- W4387619114 cites W2905395632 @default.
- W4387619114 cites W2907977495 @default.
- W4387619114 cites W2949153442 @default.
- W4387619114 cites W3010307856 @default.
- W4387619114 cites W3037430895 @default.
- W4387619114 cites W3091965589 @default.
- W4387619114 cites W3091990926 @default.
- W4387619114 cites W3092643788 @default.
- W4387619114 cites W3098165599 @default.
- W4387619114 cites W3194639102 @default.
- W4387619114 cites W3197066197 @default.
- W4387619114 cites W3202000771 @default.
- W4387619114 cites W3217050965 @default.
- W4387619114 cites W4229038278 @default.
- W4387619114 cites W4280501467 @default.
- W4387619114 cites W4308460191 @default.
- W4387619114 cites W4309777570 @default.
- W4387619114 cites W4311387144 @default.
- W4387619114 cites W4379768703 @default.
- W4387619114 cites W4385580165 @default.
- W4387619114 doi "https://doi.org/10.1016/j.phro.2023.100501" @default.
- W4387619114 hasPublicationYear "2023" @default.
- W4387619114 type Work @default.
- W4387619114 citedByCount "0" @default.
- W4387619114 crossrefType "journal-article" @default.
- W4387619114 hasAuthorship W4387619114A5000313858 @default.
- W4387619114 hasAuthorship W4387619114A5023108783 @default.
- W4387619114 hasAuthorship W4387619114A5027115231 @default.
- W4387619114 hasAuthorship W4387619114A5055095696 @default.
- W4387619114 hasAuthorship W4387619114A5055642637 @default.
- W4387619114 hasAuthorship W4387619114A5056489738 @default.
- W4387619114 hasAuthorship W4387619114A5060860935 @default.
- W4387619114 hasAuthorship W4387619114A5062607255 @default.
- W4387619114 hasAuthorship W4387619114A5076136727 @default.
- W4387619114 hasAuthorship W4387619114A5077224068 @default.
- W4387619114 hasBestOaLocation W43876191141 @default.
- W4387619114 hasConcept C121608353 @default.
- W4387619114 hasConcept C121684516 @default.
- W4387619114 hasConcept C126322002 @default.
- W4387619114 hasConcept C126838900 @default.
- W4387619114 hasConcept C154945302 @default.
- W4387619114 hasConcept C19527891 @default.
- W4387619114 hasConcept C201645570 @default.
- W4387619114 hasConcept C2776235491 @default.
- W4387619114 hasConcept C2779104521 @default.
- W4387619114 hasConcept C2780192828 @default.
- W4387619114 hasConcept C2780920918 @default.
- W4387619114 hasConcept C2989005 @default.
- W4387619114 hasConcept C41008148 @default.
- W4387619114 hasConcept C509974204 @default.
- W4387619114 hasConcept C71924100 @default.
- W4387619114 hasConcept C89600930 @default.
- W4387619114 hasConceptScore W4387619114C121608353 @default.
- W4387619114 hasConceptScore W4387619114C121684516 @default.
- W4387619114 hasConceptScore W4387619114C126322002 @default.
- W4387619114 hasConceptScore W4387619114C126838900 @default.
- W4387619114 hasConceptScore W4387619114C154945302 @default.
- W4387619114 hasConceptScore W4387619114C19527891 @default.
- W4387619114 hasConceptScore W4387619114C201645570 @default.
- W4387619114 hasConceptScore W4387619114C2776235491 @default.
- W4387619114 hasConceptScore W4387619114C2779104521 @default.
- W4387619114 hasConceptScore W4387619114C2780192828 @default.
- W4387619114 hasConceptScore W4387619114C2780920918 @default.
- W4387619114 hasConceptScore W4387619114C2989005 @default.
- W4387619114 hasConceptScore W4387619114C41008148 @default.
- W4387619114 hasConceptScore W4387619114C509974204 @default.
- W4387619114 hasConceptScore W4387619114C71924100 @default.
- W4387619114 hasConceptScore W4387619114C89600930 @default.
- W4387619114 hasLocation W43876191141 @default.
- W4387619114 hasOpenAccess W4387619114 @default.