Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387621947> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4387621947 endingPage "21" @default.
- W4387621947 startingPage "15" @default.
- W4387621947 abstract "Modern engineering solutions often aim to improve the energy efficiency of their structures by including lightweight, flexible, and slender designs. In practice, it is not always possible to maximise these characteristics and hence the efficiency of the structures, as they exhibit complex, nonlinear structural dynamics. Unless this behaviour is accurately predicted or controlled, the system may encounter extremely destructive behaviour, which can lead to catastrophic mechanical failure. Non-intrusive reduced-order models (NIROMs)—which project the system dynamics onto a reduced set of modes and approximate the nonlinear components of the behaviour—have, therefore, been of great interest and have the potential to greatly increase the industrial uptake of high-efficiency, nonlinear structures. Existing methodologies for NIROM generation apply linear regression to static force and displacement cases, but this approach has previously been demonstrated to be overly dependent on the scale of these characteristics, a point that has prevented wider application. In this work, initial steps are taken to utilise physics-informed recurrent neural networks (RNNs) in place of the static step, allowing the dynamic behaviour to be more accurately captured in the NIROM. First, the use of random and periodic data series is applied in the training stage, with low-pass filtered white noise shown to provide the more reliable model. Following this, long short-term memory RNNs are developed both with and without a physics-informed loss function, with the former demonstrating faster convergence and more accurate predictions. This study represents the first steps taken in a wider project that aims to improve the accuracy and reliability of nonlinear NIROMs, so that they may be more readily applied in a real-world setting." @default.
- W4387621947 created "2023-10-14" @default.
- W4387621947 creator A5045484418 @default.
- W4387621947 date "2023-06-19" @default.
- W4387621947 modified "2023-10-15" @default.
- W4387621947 title "Creating Data-Driven Reduced-Order Models for Nonlinear Vibration via Physics-Informed Neural Networks" @default.
- W4387621947 cites W1736100276 @default.
- W4387621947 cites W1991031225 @default.
- W4387621947 cites W2047851025 @default.
- W4387621947 cites W2059932721 @default.
- W4387621947 cites W2062145738 @default.
- W4387621947 cites W2064675550 @default.
- W4387621947 cites W2146787637 @default.
- W4387621947 cites W2332575736 @default.
- W4387621947 cites W2795274270 @default.
- W4387621947 cites W2899283552 @default.
- W4387621947 cites W2946907800 @default.
- W4387621947 cites W3201269915 @default.
- W4387621947 cites W3203180379 @default.
- W4387621947 cites W3216863713 @default.
- W4387621947 cites W4212958356 @default.
- W4387621947 cites W4300140782 @default.
- W4387621947 doi "https://doi.org/10.1007/978-3-031-36999-5_3" @default.
- W4387621947 hasPublicationYear "2023" @default.
- W4387621947 type Work @default.
- W4387621947 citedByCount "0" @default.
- W4387621947 crossrefType "book-chapter" @default.
- W4387621947 hasAuthorship W4387621947A5045484418 @default.
- W4387621947 hasConcept C107551265 @default.
- W4387621947 hasConcept C112633086 @default.
- W4387621947 hasConcept C115961682 @default.
- W4387621947 hasConcept C121332964 @default.
- W4387621947 hasConcept C127413603 @default.
- W4387621947 hasConcept C147168706 @default.
- W4387621947 hasConcept C154945302 @default.
- W4387621947 hasConcept C15744967 @default.
- W4387621947 hasConcept C158622935 @default.
- W4387621947 hasConcept C162324750 @default.
- W4387621947 hasConcept C177264268 @default.
- W4387621947 hasConcept C198394728 @default.
- W4387621947 hasConcept C199360897 @default.
- W4387621947 hasConcept C2775924081 @default.
- W4387621947 hasConcept C2777303404 @default.
- W4387621947 hasConcept C41008148 @default.
- W4387621947 hasConcept C47446073 @default.
- W4387621947 hasConcept C50522688 @default.
- W4387621947 hasConcept C50644808 @default.
- W4387621947 hasConcept C542102704 @default.
- W4387621947 hasConcept C62520636 @default.
- W4387621947 hasConcept C76155785 @default.
- W4387621947 hasConcept C99498987 @default.
- W4387621947 hasConceptScore W4387621947C107551265 @default.
- W4387621947 hasConceptScore W4387621947C112633086 @default.
- W4387621947 hasConceptScore W4387621947C115961682 @default.
- W4387621947 hasConceptScore W4387621947C121332964 @default.
- W4387621947 hasConceptScore W4387621947C127413603 @default.
- W4387621947 hasConceptScore W4387621947C147168706 @default.
- W4387621947 hasConceptScore W4387621947C154945302 @default.
- W4387621947 hasConceptScore W4387621947C15744967 @default.
- W4387621947 hasConceptScore W4387621947C158622935 @default.
- W4387621947 hasConceptScore W4387621947C162324750 @default.
- W4387621947 hasConceptScore W4387621947C177264268 @default.
- W4387621947 hasConceptScore W4387621947C198394728 @default.
- W4387621947 hasConceptScore W4387621947C199360897 @default.
- W4387621947 hasConceptScore W4387621947C2775924081 @default.
- W4387621947 hasConceptScore W4387621947C2777303404 @default.
- W4387621947 hasConceptScore W4387621947C41008148 @default.
- W4387621947 hasConceptScore W4387621947C47446073 @default.
- W4387621947 hasConceptScore W4387621947C50522688 @default.
- W4387621947 hasConceptScore W4387621947C50644808 @default.
- W4387621947 hasConceptScore W4387621947C542102704 @default.
- W4387621947 hasConceptScore W4387621947C62520636 @default.
- W4387621947 hasConceptScore W4387621947C76155785 @default.
- W4387621947 hasConceptScore W4387621947C99498987 @default.
- W4387621947 hasLocation W43876219471 @default.
- W4387621947 hasOpenAccess W4387621947 @default.
- W4387621947 hasPrimaryLocation W43876219471 @default.
- W4387621947 hasRelatedWork W1847088711 @default.
- W4387621947 hasRelatedWork W1889624880 @default.
- W4387621947 hasRelatedWork W2229372569 @default.
- W4387621947 hasRelatedWork W2953061907 @default.
- W4387621947 hasRelatedWork W2964335273 @default.
- W4387621947 hasRelatedWork W3032952384 @default.
- W4387621947 hasRelatedWork W3034302643 @default.
- W4387621947 hasRelatedWork W3036642985 @default.
- W4387621947 hasRelatedWork W4225394202 @default.
- W4387621947 hasRelatedWork W4298287631 @default.
- W4387621947 isParatext "false" @default.
- W4387621947 isRetracted "false" @default.
- W4387621947 workType "book-chapter" @default.