Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387630608> ?p ?o ?g. }
- W4387630608 endingPage "105434" @default.
- W4387630608 startingPage "105434" @default.
- W4387630608 abstract "Rockburst is a geological hazard frequently encountered in deep underground engineering projects that threaten workers’ safety and causes damage to an excavation. The occurrence of rockburst has motivated researchers to intensely investigate different methods to predict its severity. Consequently, scholars applied Machine Learning (ML) methods in rockburst prediction to address the complex, nonlinear relationship between rockburst and its impacting constituents intelligently. Although some past reviews attempted to provide an overview of ML methods in rockburst prediction, there has been no systematic study that details the significance of ML over other methods, insights related to ML types and model description, and a detailed comparative study between different ML methods in terms of performance, technical information and merits and demerits of each method in existing research, etc. Hence, aiming to provide a comprehensive and resourceful review of long-term and short-term rockburst prediction, this work initially defines rockburst, highlights the limitations of several previous prediction approaches, and explores the significance of ML over them. Secondly, a brief description of each predicting model is provided. After, achievements and advancements in the existing field over the past two decades are surveyed and categorised with technical information and rockburst databases are established. Furthermore, the merits, demerits and performances of all methods in the current application are discussed and suggestions to handle rockburst data are presented. Finally, future work remaining in this area of research is identified and overall conclusion is drawn." @default.
- W4387630608 created "2023-10-14" @default.
- W4387630608 creator A5009094477 @default.
- W4387630608 creator A5044817232 @default.
- W4387630608 creator A5056914053 @default.
- W4387630608 date "2023-12-01" @default.
- W4387630608 modified "2023-10-15" @default.
- W4387630608 title "A comprehensive review of intelligent machine learning based predicting methods in long-term and short-term rock burst prediction" @default.
- W4387630608 cites W1904429860 @default.
- W4387630608 cites W1963725262 @default.
- W4387630608 cites W1971891346 @default.
- W4387630608 cites W1982979518 @default.
- W4387630608 cites W1983231119 @default.
- W4387630608 cites W1995341919 @default.
- W4387630608 cites W2002830978 @default.
- W4387630608 cites W2005417042 @default.
- W4387630608 cites W2009506086 @default.
- W4387630608 cites W2012594398 @default.
- W4387630608 cites W2023010951 @default.
- W4387630608 cites W2030655673 @default.
- W4387630608 cites W2031895522 @default.
- W4387630608 cites W2035032965 @default.
- W4387630608 cites W2040231612 @default.
- W4387630608 cites W2043534441 @default.
- W4387630608 cites W2047072771 @default.
- W4387630608 cites W2050269945 @default.
- W4387630608 cites W2066813588 @default.
- W4387630608 cites W2071128523 @default.
- W4387630608 cites W2072299458 @default.
- W4387630608 cites W2074232696 @default.
- W4387630608 cites W2080021600 @default.
- W4387630608 cites W2084417035 @default.
- W4387630608 cites W2087347434 @default.
- W4387630608 cites W2141681593 @default.
- W4387630608 cites W215924247 @default.
- W4387630608 cites W2223110200 @default.
- W4387630608 cites W2256514539 @default.
- W4387630608 cites W2294798173 @default.
- W4387630608 cites W2315225765 @default.
- W4387630608 cites W2480752959 @default.
- W4387630608 cites W2528585926 @default.
- W4387630608 cites W2755552321 @default.
- W4387630608 cites W2762138843 @default.
- W4387630608 cites W2788705312 @default.
- W4387630608 cites W2808459110 @default.
- W4387630608 cites W2810353140 @default.
- W4387630608 cites W2883008720 @default.
- W4387630608 cites W2883258183 @default.
- W4387630608 cites W2884158713 @default.
- W4387630608 cites W2884906228 @default.
- W4387630608 cites W2884954782 @default.
- W4387630608 cites W2889324073 @default.
- W4387630608 cites W2890756131 @default.
- W4387630608 cites W2897865480 @default.
- W4387630608 cites W2907153437 @default.
- W4387630608 cites W2911020617 @default.
- W4387630608 cites W2911964244 @default.
- W4387630608 cites W2912432621 @default.
- W4387630608 cites W2912815540 @default.
- W4387630608 cites W2913724868 @default.
- W4387630608 cites W2940513806 @default.
- W4387630608 cites W2948505361 @default.
- W4387630608 cites W2953743022 @default.
- W4387630608 cites W2962784645 @default.
- W4387630608 cites W2968710571 @default.
- W4387630608 cites W2972874298 @default.
- W4387630608 cites W2986456373 @default.
- W4387630608 cites W2999062487 @default.
- W4387630608 cites W3024987184 @default.
- W4387630608 cites W3031940073 @default.
- W4387630608 cites W3038255799 @default.
- W4387630608 cites W3082831974 @default.
- W4387630608 cites W3092004869 @default.
- W4387630608 cites W3113398338 @default.
- W4387630608 cites W3119457337 @default.
- W4387630608 cites W3126718466 @default.
- W4387630608 cites W3133107848 @default.
- W4387630608 cites W3134835193 @default.
- W4387630608 cites W3135297126 @default.
- W4387630608 cites W3148181069 @default.
- W4387630608 cites W3167769675 @default.
- W4387630608 cites W3170718852 @default.
- W4387630608 cites W3192053277 @default.
- W4387630608 cites W3194167738 @default.
- W4387630608 cites W3195264297 @default.
- W4387630608 cites W3211084629 @default.
- W4387630608 cites W4200561803 @default.
- W4387630608 cites W4205169943 @default.
- W4387630608 cites W4239510810 @default.
- W4387630608 cites W4297349226 @default.
- W4387630608 cites W4302029072 @default.
- W4387630608 cites W4313478452 @default.
- W4387630608 cites W4324385853 @default.
- W4387630608 cites W655850370 @default.
- W4387630608 doi "https://doi.org/10.1016/j.tust.2023.105434" @default.
- W4387630608 hasPublicationYear "2023" @default.
- W4387630608 type Work @default.
- W4387630608 citedByCount "0" @default.