Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387631295> ?p ?o ?g. }
- W4387631295 endingPage "105572" @default.
- W4387631295 startingPage "105572" @default.
- W4387631295 abstract "Sleep was highly imperative in human daily life. However, an increasing number of people were undergoing sleep deprivation and sleep disorders. Sleep stage classification became a highly essential process in sleep scoring. Nevertheless, the visual scoring of arousals during sleep routinely performed by sleep specialists was a challenging exercise. This paper introduced a novel approach for sleep stage classification using covariance feature matrix architecture with multivariate phase space reconstruction (MPSR). The goal was to capture the geometric properties and the hidden dynamic characteristics of multiple physiological signals. The covariance matrices constructed through the MPSR approach were considered as symmetric and positive definite (SPD) matrices, forming a Riemannian manifold space. These SPD matrices in the Riemannian manifold were mapped to the matrices in the tangent space, allowing them to be vectorized and treated as feature vectors in Euclidean space. Finally, an ensemble learning classifier was applied to perform various sleep stage tasks. Our proposed method was evaluated on three benchmark datasets to assess its effectiveness and robustness. For the tasks of both Five class and Six class sleep stages, the proposed approach in ten-fold cross validation achieved high accuracy of 93.57% and 92.56% for the Sleep EDF dataset, 86.36% and 84.18% for the DREAMS Subjects dataset, as well as 88.93% and 88.42% for the Sleep EDF Expanded dataset (95 subjects), respectively. In leave-one-subject-out cross validation, our proposed approach for the tasks of both Five class and Six class sleep stages yielded an accuracy of 84.46% and 80.73% for the Sleep EDF dataset, 82.50% and 79.51% for the DREAMS Subjects dataset, as well as 93.25% and 92.06% for the Sleep EDF Expanded-20 dataset (20 subjects), respectively. Compared to the traditional sample covariance matrix (SCM), the covariance feature matrix using the MPSR method successfully captured the distinction of spatial information among various sleep stages. Moreover, our proposed method obtained good performance without requiring computationally large artifact suppression or a long signal decomposition process." @default.
- W4387631295 created "2023-10-14" @default.
- W4387631295 creator A5005663866 @default.
- W4387631295 creator A5006059084 @default.
- W4387631295 creator A5022802322 @default.
- W4387631295 creator A5073671982 @default.
- W4387631295 creator A5087604195 @default.
- W4387631295 creator A5088438299 @default.
- W4387631295 date "2024-02-01" @default.
- W4387631295 modified "2023-10-15" @default.
- W4387631295 title "Multivariate phase space reconstruction and Riemannian manifold for sleep stage classification" @default.
- W4387631295 cites W1543113863 @default.
- W4387631295 cites W1582425178 @default.
- W4387631295 cites W1976570823 @default.
- W4387631295 cites W1989061873 @default.
- W4387631295 cites W2035715639 @default.
- W4387631295 cites W2056583019 @default.
- W4387631295 cites W2159022845 @default.
- W4387631295 cites W2163462953 @default.
- W4387631295 cites W2164794989 @default.
- W4387631295 cites W2167411254 @default.
- W4387631295 cites W2333141530 @default.
- W4387631295 cites W2464293894 @default.
- W4387631295 cites W2482168716 @default.
- W4387631295 cites W2511907357 @default.
- W4387631295 cites W2549437649 @default.
- W4387631295 cites W2565543439 @default.
- W4387631295 cites W2604096629 @default.
- W4387631295 cites W2612047884 @default.
- W4387631295 cites W2765826006 @default.
- W4387631295 cites W2767333869 @default.
- W4387631295 cites W2792420355 @default.
- W4387631295 cites W2913237197 @default.
- W4387631295 cites W2913374038 @default.
- W4387631295 cites W2920016582 @default.
- W4387631295 cites W2949133807 @default.
- W4387631295 cites W2949809416 @default.
- W4387631295 cites W2950301853 @default.
- W4387631295 cites W2962999323 @default.
- W4387631295 cites W2968632081 @default.
- W4387631295 cites W2977136224 @default.
- W4387631295 cites W2981947319 @default.
- W4387631295 cites W2996637812 @default.
- W4387631295 cites W3006728628 @default.
- W4387631295 cites W3007426534 @default.
- W4387631295 cites W3031414520 @default.
- W4387631295 cites W3036460714 @default.
- W4387631295 cites W3042678869 @default.
- W4387631295 cites W3046663063 @default.
- W4387631295 cites W3049961784 @default.
- W4387631295 cites W3133617246 @default.
- W4387631295 cites W3144491363 @default.
- W4387631295 cites W3153310483 @default.
- W4387631295 cites W3169983773 @default.
- W4387631295 cites W3195556514 @default.
- W4387631295 cites W3198098992 @default.
- W4387631295 cites W3203998442 @default.
- W4387631295 cites W4220922416 @default.
- W4387631295 cites W4231438709 @default.
- W4387631295 cites W4285150595 @default.
- W4387631295 cites W4294958469 @default.
- W4387631295 cites W4309204530 @default.
- W4387631295 cites W4319320827 @default.
- W4387631295 doi "https://doi.org/10.1016/j.bspc.2023.105572" @default.
- W4387631295 hasPublicationYear "2024" @default.
- W4387631295 type Work @default.
- W4387631295 citedByCount "0" @default.
- W4387631295 crossrefType "journal-article" @default.
- W4387631295 hasAuthorship W4387631295A5005663866 @default.
- W4387631295 hasAuthorship W4387631295A5006059084 @default.
- W4387631295 hasAuthorship W4387631295A5022802322 @default.
- W4387631295 hasAuthorship W4387631295A5073671982 @default.
- W4387631295 hasAuthorship W4387631295A5087604195 @default.
- W4387631295 hasAuthorship W4387631295A5088438299 @default.
- W4387631295 hasConcept C104317684 @default.
- W4387631295 hasConcept C111919701 @default.
- W4387631295 hasConcept C11413529 @default.
- W4387631295 hasConcept C118552586 @default.
- W4387631295 hasConcept C119857082 @default.
- W4387631295 hasConcept C153180895 @default.
- W4387631295 hasConcept C154945302 @default.
- W4387631295 hasConcept C161584116 @default.
- W4387631295 hasConcept C185592680 @default.
- W4387631295 hasConcept C186450821 @default.
- W4387631295 hasConcept C202444582 @default.
- W4387631295 hasConcept C2775841894 @default.
- W4387631295 hasConcept C2778205975 @default.
- W4387631295 hasConcept C2779593128 @default.
- W4387631295 hasConcept C2910364982 @default.
- W4387631295 hasConcept C33923547 @default.
- W4387631295 hasConcept C41008148 @default.
- W4387631295 hasConcept C522805319 @default.
- W4387631295 hasConcept C55493867 @default.
- W4387631295 hasConcept C63479239 @default.
- W4387631295 hasConcept C71924100 @default.
- W4387631295 hasConcept C95623464 @default.
- W4387631295 hasConceptScore W4387631295C104317684 @default.
- W4387631295 hasConceptScore W4387631295C111919701 @default.