Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387632406> ?p ?o ?g. }
- W4387632406 endingPage "119379" @default.
- W4387632406 startingPage "119379" @default.
- W4387632406 abstract "Design and optimization of CO2 capture processes have become a tremendously active area of research particularly in the past decade. In this context, development of intelligent techniques on the basis of first-principles models coupled with data-driven algorithms for such purpose looks very promising. In a series of works, we intend to present mechanism approaches in order to develop applicable structures for design and optimization of the CO2 capture processes of interest via hybrid models. A systematic method is presented for optimizing a process for capturing CO2 from a confined space through a Vacuum Pressure Swing Adsorption (VPSA) operation using a Hybrid Surrogate Model (HSM) and Non-dominated Sorting Genetic Algorithm (NSGA-III). The surrogate model is structured based on the VPSA process model offered in the Aspen Adsorption® environment and an artificial intelligence (AI) data-driven algorithm. The developed HSM is then used to predict the key process outputs including CO2 purity, air recovery ratio and energy consumption rate. Accordingly, the optimized parameters are re-substituted into the VPSA process simulator for further data processing. It is demonstrated that the proposed model architecture provides considerable computational efficiency for the process optimization with only 48 h to complete the corresponding evolutionary search, while the optimization time by the conventional NSGA-direct method is close to 1129 h. The optimization results also show that the CO2 purity changes from 1000 ppm to 399 ppm, the air recovery ratio remains at 93 %, and the energy consumption per unit product (ECP) decreases by 38.5 % to 99.7 kJ·Nm−3 air after an optimized air purification operation. The idea of chemical mechanism and industrial data twin modeling in this study holds substantial importance for the development of digital chemical twin systems and the process optimization of intelligent factory." @default.
- W4387632406 created "2023-10-14" @default.
- W4387632406 creator A5008881616 @default.
- W4387632406 creator A5013863365 @default.
- W4387632406 creator A5022182501 @default.
- W4387632406 creator A5025939705 @default.
- W4387632406 creator A5044367029 @default.
- W4387632406 creator A5046935496 @default.
- W4387632406 creator A5081822445 @default.
- W4387632406 creator A5085695191 @default.
- W4387632406 date "2024-01-01" @default.
- W4387632406 modified "2023-10-15" @default.
- W4387632406 title "Development of hybrid surrogate model structures for design and optimization of CO2 capture processes: Part I. Vacuum pressure swing adsorption in a confined space" @default.
- W4387632406 cites W1506984560 @default.
- W4387632406 cites W1966519533 @default.
- W4387632406 cites W1986897801 @default.
- W4387632406 cites W1987169249 @default.
- W4387632406 cites W2007424415 @default.
- W4387632406 cites W2009040339 @default.
- W4387632406 cites W2042831115 @default.
- W4387632406 cites W2059800313 @default.
- W4387632406 cites W2068541472 @default.
- W4387632406 cites W2083501097 @default.
- W4387632406 cites W2084161818 @default.
- W4387632406 cites W2131379134 @default.
- W4387632406 cites W2149775926 @default.
- W4387632406 cites W2333631447 @default.
- W4387632406 cites W2333824955 @default.
- W4387632406 cites W2507901545 @default.
- W4387632406 cites W2540463178 @default.
- W4387632406 cites W2763334015 @default.
- W4387632406 cites W2770215911 @default.
- W4387632406 cites W2804272245 @default.
- W4387632406 cites W2809317769 @default.
- W4387632406 cites W2889237175 @default.
- W4387632406 cites W2958695158 @default.
- W4387632406 cites W2978521883 @default.
- W4387632406 cites W2994232218 @default.
- W4387632406 cites W3004516934 @default.
- W4387632406 cites W3032503733 @default.
- W4387632406 cites W3077955204 @default.
- W4387632406 cites W3091857935 @default.
- W4387632406 cites W3162414045 @default.
- W4387632406 cites W4200329208 @default.
- W4387632406 cites W4224885807 @default.
- W4387632406 cites W4225424200 @default.
- W4387632406 cites W4249517230 @default.
- W4387632406 cites W4281387511 @default.
- W4387632406 cites W4285273682 @default.
- W4387632406 cites W4316672656 @default.
- W4387632406 cites W4317207021 @default.
- W4387632406 cites W4324055456 @default.
- W4387632406 cites W4363674595 @default.
- W4387632406 doi "https://doi.org/10.1016/j.ces.2023.119379" @default.
- W4387632406 hasPublicationYear "2024" @default.
- W4387632406 type Work @default.
- W4387632406 citedByCount "0" @default.
- W4387632406 crossrefType "journal-article" @default.
- W4387632406 hasAuthorship W4387632406A5008881616 @default.
- W4387632406 hasAuthorship W4387632406A5013863365 @default.
- W4387632406 hasAuthorship W4387632406A5022182501 @default.
- W4387632406 hasAuthorship W4387632406A5025939705 @default.
- W4387632406 hasAuthorship W4387632406A5044367029 @default.
- W4387632406 hasAuthorship W4387632406A5046935496 @default.
- W4387632406 hasAuthorship W4387632406A5081822445 @default.
- W4387632406 hasAuthorship W4387632406A5085695191 @default.
- W4387632406 hasBestOaLocation W43876324061 @default.
- W4387632406 hasConcept C111696304 @default.
- W4387632406 hasConcept C111919701 @default.
- W4387632406 hasConcept C11413529 @default.
- W4387632406 hasConcept C115952470 @default.
- W4387632406 hasConcept C119599485 @default.
- W4387632406 hasConcept C119857082 @default.
- W4387632406 hasConcept C127413603 @default.
- W4387632406 hasConcept C131675550 @default.
- W4387632406 hasConcept C150394285 @default.
- W4387632406 hasConcept C151730666 @default.
- W4387632406 hasConcept C178790620 @default.
- W4387632406 hasConcept C183380300 @default.
- W4387632406 hasConcept C185592680 @default.
- W4387632406 hasConcept C201416721 @default.
- W4387632406 hasConcept C21880701 @default.
- W4387632406 hasConcept C2779343474 @default.
- W4387632406 hasConcept C2780165032 @default.
- W4387632406 hasConcept C41008148 @default.
- W4387632406 hasConcept C42360764 @default.
- W4387632406 hasConcept C68781425 @default.
- W4387632406 hasConcept C86803240 @default.
- W4387632406 hasConcept C8880873 @default.
- W4387632406 hasConcept C98045186 @default.
- W4387632406 hasConceptScore W4387632406C111696304 @default.
- W4387632406 hasConceptScore W4387632406C111919701 @default.
- W4387632406 hasConceptScore W4387632406C11413529 @default.
- W4387632406 hasConceptScore W4387632406C115952470 @default.
- W4387632406 hasConceptScore W4387632406C119599485 @default.
- W4387632406 hasConceptScore W4387632406C119857082 @default.
- W4387632406 hasConceptScore W4387632406C127413603 @default.
- W4387632406 hasConceptScore W4387632406C131675550 @default.