Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387638575> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4387638575 endingPage "8454" @default.
- W4387638575 startingPage "8454" @default.
- W4387638575 abstract "Higher standards for reliability and efficiency apply to the connection between vehicle terminals and infrastructure by the fifth-generation mobile communication technology (5G). A vehicle-to-infrastructure system uses a communication system called NR-V2I (New Radio-Vehicle to Infrastructure), which uses Link Adaptation (LA) technology to communicate in constantly changing V2I to increase the efficacy and reliability of V2I information transmission. This paper proposes a Double Deep Q-learning (DDQL) LA scheduling algorithm for optimizing the modulation and coding scheme (MCS) of autonomous driving vehicles in V2I communication. The problem with the Doppler shift and complex fast time-varying channels reducing the reliability of information transmission in V2I scenarios is that they make it less likely that the information will be transmitted accurately. Schedules for autonomous vehicles using Space Division Multiplexing (SDM) and MCS are used in V2I communications. To address the issue of Deep Q-learning (DQL) overestimation in the Q-Network learning process, the approach integrates Deep Neural Network (DNN) and Double Q-Network (DDQN). The findings of this study demonstrate that the suggested algorithm can adapt to complex channel environments with varying vehicle speeds in V2I scenarios and by choosing the best scheduling scheme for V2I road information transmission using a combination of MCS. SDM not only increases the accuracy of the transmission of road safety information but also helps to foster cooperation and communication between vehicle terminals to realize cooperative driving." @default.
- W4387638575 created "2023-10-15" @default.
- W4387638575 creator A5000672933 @default.
- W4387638575 creator A5032764121 @default.
- W4387638575 creator A5039585475 @default.
- W4387638575 creator A5048323926 @default.
- W4387638575 creator A5050297059 @default.
- W4387638575 creator A5057099580 @default.
- W4387638575 creator A5063107775 @default.
- W4387638575 creator A5083690982 @default.
- W4387638575 date "2023-10-13" @default.
- W4387638575 modified "2023-10-18" @default.
- W4387638575 title "Ultra-Reliable Deep-Reinforcement-Learning-Based Intelligent Downlink Scheduling for 5G New Radio-Vehicle to Infrastructure Scenarios" @default.
- W4387638575 cites W2735793369 @default.
- W4387638575 cites W2799130183 @default.
- W4387638575 cites W2949816299 @default.
- W4387638575 cites W2962797279 @default.
- W4387638575 cites W2963240573 @default.
- W4387638575 cites W2963809753 @default.
- W4387638575 cites W2999373287 @default.
- W4387638575 cites W2999624673 @default.
- W4387638575 cites W3006299087 @default.
- W4387638575 cites W3011085742 @default.
- W4387638575 cites W3013654797 @default.
- W4387638575 cites W3013692543 @default.
- W4387638575 cites W3016569011 @default.
- W4387638575 cites W3100789280 @default.
- W4387638575 cites W4312408339 @default.
- W4387638575 cites W4313005019 @default.
- W4387638575 cites W4319303291 @default.
- W4387638575 cites W4320000069 @default.
- W4387638575 cites W4362544387 @default.
- W4387638575 doi "https://doi.org/10.3390/s23208454" @default.
- W4387638575 hasPublicationYear "2023" @default.
- W4387638575 type Work @default.
- W4387638575 citedByCount "0" @default.
- W4387638575 crossrefType "journal-article" @default.
- W4387638575 hasAuthorship W4387638575A5000672933 @default.
- W4387638575 hasAuthorship W4387638575A5032764121 @default.
- W4387638575 hasAuthorship W4387638575A5039585475 @default.
- W4387638575 hasAuthorship W4387638575A5048323926 @default.
- W4387638575 hasAuthorship W4387638575A5050297059 @default.
- W4387638575 hasAuthorship W4387638575A5057099580 @default.
- W4387638575 hasAuthorship W4387638575A5063107775 @default.
- W4387638575 hasAuthorship W4387638575A5083690982 @default.
- W4387638575 hasBestOaLocation W43876385751 @default.
- W4387638575 hasConcept C120314980 @default.
- W4387638575 hasConcept C121332964 @default.
- W4387638575 hasConcept C127413603 @default.
- W4387638575 hasConcept C138660444 @default.
- W4387638575 hasConcept C154945302 @default.
- W4387638575 hasConcept C163258240 @default.
- W4387638575 hasConcept C206729178 @default.
- W4387638575 hasConcept C21547014 @default.
- W4387638575 hasConcept C31258907 @default.
- W4387638575 hasConcept C41008148 @default.
- W4387638575 hasConcept C43214815 @default.
- W4387638575 hasConcept C555944384 @default.
- W4387638575 hasConcept C62520636 @default.
- W4387638575 hasConcept C761482 @default.
- W4387638575 hasConcept C76155785 @default.
- W4387638575 hasConcept C79403827 @default.
- W4387638575 hasConcept C97541855 @default.
- W4387638575 hasConceptScore W4387638575C120314980 @default.
- W4387638575 hasConceptScore W4387638575C121332964 @default.
- W4387638575 hasConceptScore W4387638575C127413603 @default.
- W4387638575 hasConceptScore W4387638575C138660444 @default.
- W4387638575 hasConceptScore W4387638575C154945302 @default.
- W4387638575 hasConceptScore W4387638575C163258240 @default.
- W4387638575 hasConceptScore W4387638575C206729178 @default.
- W4387638575 hasConceptScore W4387638575C21547014 @default.
- W4387638575 hasConceptScore W4387638575C31258907 @default.
- W4387638575 hasConceptScore W4387638575C41008148 @default.
- W4387638575 hasConceptScore W4387638575C43214815 @default.
- W4387638575 hasConceptScore W4387638575C555944384 @default.
- W4387638575 hasConceptScore W4387638575C62520636 @default.
- W4387638575 hasConceptScore W4387638575C761482 @default.
- W4387638575 hasConceptScore W4387638575C76155785 @default.
- W4387638575 hasConceptScore W4387638575C79403827 @default.
- W4387638575 hasConceptScore W4387638575C97541855 @default.
- W4387638575 hasIssue "20" @default.
- W4387638575 hasLocation W43876385751 @default.
- W4387638575 hasOpenAccess W4387638575 @default.
- W4387638575 hasPrimaryLocation W43876385751 @default.
- W4387638575 hasRelatedWork W1761601995 @default.
- W4387638575 hasRelatedWork W1995129237 @default.
- W4387638575 hasRelatedWork W2097713053 @default.
- W4387638575 hasRelatedWork W2159941915 @default.
- W4387638575 hasRelatedWork W2548963335 @default.
- W4387638575 hasRelatedWork W2571404653 @default.
- W4387638575 hasRelatedWork W2904599916 @default.
- W4387638575 hasRelatedWork W2962882802 @default.
- W4387638575 hasRelatedWork W4300468626 @default.
- W4387638575 hasRelatedWork W4321608401 @default.
- W4387638575 hasVolume "23" @default.
- W4387638575 isParatext "false" @default.
- W4387638575 isRetracted "false" @default.
- W4387638575 workType "article" @default.