Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387640879> ?p ?o ?g. }
- W4387640879 endingPage "11567" @default.
- W4387640879 startingPage "11561" @default.
- W4387640879 abstract "Cotton is one of the most important agricultural products and is closely linked to the economic development of Pakistan. However, the cotton plant is susceptible to bacterial and viral diseases that can quickly spread and damage plants and ultimately affect the cotton yield. The automated and early detection of affected plants can significantly reduce the potential spread of the disease. This paper presents the implementation and performance analysis of bacterial blight and curl virus disease detection in cotton crops through deep learning techniques. The automated disease detection is performed through transfer learning of six pre-trained deep learning models, namely DenseNet121, DenseNet169, MobileNetV2, ResNet50V2, VGG16, and VGG19. A total of 1362 images of local agricultural fields and 1292 images from online resources were used to train and validate the models. Image augmentation techniques were performed to increase the dataset diversity and size. Transfer learning was implemented for different image resolutions ranging from 32×32 to 256×256 pixels. Performance metrics such as accuracy, precision, recall, F1 Score, and prediction time were evaluated for each implemented model. The results indicate higher accuracy, up to 96%, for DenseNet169 and ResNet50V2 models when trained on the 256×256 pixels image dataset. The lowest accuracy, 52%, was obtained by the MobileNetV2 model when trained on low-resolution, 32×32, images. The confusion matrix analysis indicates the true-positive prediction rates higher than 91% for fresh leaves, 87% for bacterial blight, and 76% for curl virus detection for all implemented models when trained and tested on an image dataset of 128×128 pixels or higher resolution." @default.
- W4387640879 created "2023-10-15" @default.
- W4387640879 creator A5002983664 @default.
- W4387640879 creator A5009597844 @default.
- W4387640879 creator A5017798886 @default.
- W4387640879 creator A5036034616 @default.
- W4387640879 creator A5075163202 @default.
- W4387640879 date "2023-10-13" @default.
- W4387640879 modified "2023-10-15" @default.
- W4387640879 title "Performance Analysis of Deep Transfer Learning Models for the Automated Detection of Cotton Plant Diseases" @default.
- W4387640879 cites W2293491734 @default.
- W4387640879 cites W2473156356 @default.
- W4387640879 cites W2564288310 @default.
- W4387640879 cites W2731165298 @default.
- W4387640879 cites W2794026873 @default.
- W4387640879 cites W2884416373 @default.
- W4387640879 cites W2900542319 @default.
- W4387640879 cites W2901380936 @default.
- W4387640879 cites W2911433502 @default.
- W4387640879 cites W2922379180 @default.
- W4387640879 cites W2940118123 @default.
- W4387640879 cites W2942760891 @default.
- W4387640879 cites W2943643909 @default.
- W4387640879 cites W2963163009 @default.
- W4387640879 cites W2968171911 @default.
- W4387640879 cites W3092599758 @default.
- W4387640879 cites W3158150050 @default.
- W4387640879 cites W3159001838 @default.
- W4387640879 cites W3169534941 @default.
- W4387640879 cites W3172817298 @default.
- W4387640879 cites W3178954257 @default.
- W4387640879 cites W3196717993 @default.
- W4387640879 cites W3204060998 @default.
- W4387640879 cites W3205998632 @default.
- W4387640879 cites W3214317020 @default.
- W4387640879 cites W4205903501 @default.
- W4387640879 cites W4223472327 @default.
- W4387640879 cites W4283383380 @default.
- W4387640879 cites W4295934940 @default.
- W4387640879 cites W4312463564 @default.
- W4387640879 cites W4375830899 @default.
- W4387640879 doi "https://doi.org/10.48084/etasr.6187" @default.
- W4387640879 hasPublicationYear "2023" @default.
- W4387640879 type Work @default.
- W4387640879 citedByCount "0" @default.
- W4387640879 crossrefType "journal-article" @default.
- W4387640879 hasAuthorship W4387640879A5002983664 @default.
- W4387640879 hasAuthorship W4387640879A5009597844 @default.
- W4387640879 hasAuthorship W4387640879A5017798886 @default.
- W4387640879 hasAuthorship W4387640879A5036034616 @default.
- W4387640879 hasAuthorship W4387640879A5075163202 @default.
- W4387640879 hasBestOaLocation W43876408791 @default.
- W4387640879 hasConcept C108583219 @default.
- W4387640879 hasConcept C109110057 @default.
- W4387640879 hasConcept C119857082 @default.
- W4387640879 hasConcept C138602881 @default.
- W4387640879 hasConcept C150899416 @default.
- W4387640879 hasConcept C153180895 @default.
- W4387640879 hasConcept C154945302 @default.
- W4387640879 hasConcept C159047783 @default.
- W4387640879 hasConcept C160633673 @default.
- W4387640879 hasConcept C182076605 @default.
- W4387640879 hasConcept C2522874641 @default.
- W4387640879 hasConcept C2778053290 @default.
- W4387640879 hasConcept C41008148 @default.
- W4387640879 hasConcept C6557445 @default.
- W4387640879 hasConcept C86803240 @default.
- W4387640879 hasConceptScore W4387640879C108583219 @default.
- W4387640879 hasConceptScore W4387640879C109110057 @default.
- W4387640879 hasConceptScore W4387640879C119857082 @default.
- W4387640879 hasConceptScore W4387640879C138602881 @default.
- W4387640879 hasConceptScore W4387640879C150899416 @default.
- W4387640879 hasConceptScore W4387640879C153180895 @default.
- W4387640879 hasConceptScore W4387640879C154945302 @default.
- W4387640879 hasConceptScore W4387640879C159047783 @default.
- W4387640879 hasConceptScore W4387640879C160633673 @default.
- W4387640879 hasConceptScore W4387640879C182076605 @default.
- W4387640879 hasConceptScore W4387640879C2522874641 @default.
- W4387640879 hasConceptScore W4387640879C2778053290 @default.
- W4387640879 hasConceptScore W4387640879C41008148 @default.
- W4387640879 hasConceptScore W4387640879C6557445 @default.
- W4387640879 hasConceptScore W4387640879C86803240 @default.
- W4387640879 hasIssue "5" @default.
- W4387640879 hasLocation W43876408791 @default.
- W4387640879 hasOpenAccess W4387640879 @default.
- W4387640879 hasPrimaryLocation W43876408791 @default.
- W4387640879 hasRelatedWork W1032587830 @default.
- W4387640879 hasRelatedWork W1544150026 @default.
- W4387640879 hasRelatedWork W1572948935 @default.
- W4387640879 hasRelatedWork W193821925 @default.
- W4387640879 hasRelatedWork W2001801361 @default.
- W4387640879 hasRelatedWork W2055205161 @default.
- W4387640879 hasRelatedWork W2070165089 @default.
- W4387640879 hasRelatedWork W2391196969 @default.
- W4387640879 hasRelatedWork W2402534618 @default.
- W4387640879 hasRelatedWork W2801078620 @default.
- W4387640879 hasVolume "13" @default.
- W4387640879 isParatext "false" @default.