Matches in SemOpenAlex for { <https://semopenalex.org/work/W4387641053> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W4387641053 endingPage "11738" @default.
- W4387641053 startingPage "11735" @default.
- W4387641053 abstract "The field of finance makes extensive use of real-time prediction of stock price tools, which are instruments that are put to use in the process of creating predictions. In this article, we attempt to predict the price of Bitcoin in a manner that is both accurate and reliable. Deep learning models, as opposed to more traditional methods, are used to manage enormous volumes of data and to generate predictions. The purpose of this research is to develop a method for predicting stock prices using the Hybrid Convolutional Recurrent Model (HCRM) architecture. This model architecture integrates the advantages of two separate deep learning models: The 1-Dimensional-Convolusional Neural Network (1D-CNN) and the Long-Short Term Memory (LSTM). The 1D-CNN is responsible for the feature extraction, while the LSTM is in charge of the temporal regression. The developed 1D-CNN-LSTM model has an outstanding performance in predicting stock values." @default.
- W4387641053 created "2023-10-15" @default.
- W4387641053 creator A5028710457 @default.
- W4387641053 creator A5039222162 @default.
- W4387641053 creator A5056975761 @default.
- W4387641053 creator A5074678308 @default.
- W4387641053 date "2023-10-13" @default.
- W4387641053 modified "2023-10-15" @default.
- W4387641053 title "Bitcoin Price Prediction using the Hybrid Convolutional Recurrent Model Architecture" @default.
- W4387641053 cites W1980836123 @default.
- W4387641053 cites W2513607014 @default.
- W4387641053 cites W2586112617 @default.
- W4387641053 cites W2775379762 @default.
- W4387641053 cites W2900880305 @default.
- W4387641053 cites W2910159406 @default.
- W4387641053 cites W2947345662 @default.
- W4387641053 cites W2974558844 @default.
- W4387641053 cites W3007066689 @default.
- W4387641053 cites W3009142625 @default.
- W4387641053 cites W3012113472 @default.
- W4387641053 cites W3099331529 @default.
- W4387641053 cites W3169023500 @default.
- W4387641053 cites W4223481172 @default.
- W4387641053 cites W4224233911 @default.
- W4387641053 cites W4308748513 @default.
- W4387641053 doi "https://doi.org/10.48084/etasr.6223" @default.
- W4387641053 hasPublicationYear "2023" @default.
- W4387641053 type Work @default.
- W4387641053 citedByCount "0" @default.
- W4387641053 crossrefType "journal-article" @default.
- W4387641053 hasAuthorship W4387641053A5028710457 @default.
- W4387641053 hasAuthorship W4387641053A5039222162 @default.
- W4387641053 hasAuthorship W4387641053A5056975761 @default.
- W4387641053 hasAuthorship W4387641053A5074678308 @default.
- W4387641053 hasBestOaLocation W43876410531 @default.
- W4387641053 hasConcept C108583219 @default.
- W4387641053 hasConcept C119857082 @default.
- W4387641053 hasConcept C123657996 @default.
- W4387641053 hasConcept C127413603 @default.
- W4387641053 hasConcept C142362112 @default.
- W4387641053 hasConcept C143724316 @default.
- W4387641053 hasConcept C151730666 @default.
- W4387641053 hasConcept C153349607 @default.
- W4387641053 hasConcept C154945302 @default.
- W4387641053 hasConcept C204036174 @default.
- W4387641053 hasConcept C2988984586 @default.
- W4387641053 hasConcept C41008148 @default.
- W4387641053 hasConcept C78519656 @default.
- W4387641053 hasConcept C81363708 @default.
- W4387641053 hasConcept C86803240 @default.
- W4387641053 hasConceptScore W4387641053C108583219 @default.
- W4387641053 hasConceptScore W4387641053C119857082 @default.
- W4387641053 hasConceptScore W4387641053C123657996 @default.
- W4387641053 hasConceptScore W4387641053C127413603 @default.
- W4387641053 hasConceptScore W4387641053C142362112 @default.
- W4387641053 hasConceptScore W4387641053C143724316 @default.
- W4387641053 hasConceptScore W4387641053C151730666 @default.
- W4387641053 hasConceptScore W4387641053C153349607 @default.
- W4387641053 hasConceptScore W4387641053C154945302 @default.
- W4387641053 hasConceptScore W4387641053C204036174 @default.
- W4387641053 hasConceptScore W4387641053C2988984586 @default.
- W4387641053 hasConceptScore W4387641053C41008148 @default.
- W4387641053 hasConceptScore W4387641053C78519656 @default.
- W4387641053 hasConceptScore W4387641053C81363708 @default.
- W4387641053 hasConceptScore W4387641053C86803240 @default.
- W4387641053 hasIssue "5" @default.
- W4387641053 hasLocation W43876410531 @default.
- W4387641053 hasOpenAccess W4387641053 @default.
- W4387641053 hasPrimaryLocation W43876410531 @default.
- W4387641053 hasRelatedWork W1488120909 @default.
- W4387641053 hasRelatedWork W247222457 @default.
- W4387641053 hasRelatedWork W2887069341 @default.
- W4387641053 hasRelatedWork W3029198973 @default.
- W4387641053 hasRelatedWork W3124131549 @default.
- W4387641053 hasRelatedWork W3133861977 @default.
- W4387641053 hasRelatedWork W3167935049 @default.
- W4387641053 hasRelatedWork W3193565141 @default.
- W4387641053 hasRelatedWork W4226493464 @default.
- W4387641053 hasRelatedWork W4312417841 @default.
- W4387641053 hasVolume "13" @default.
- W4387641053 isParatext "false" @default.
- W4387641053 isRetracted "false" @default.
- W4387641053 workType "article" @default.